Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
J Am Chem Soc ; 146(22): 15506-15514, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38776490

ABSTRACT

Owing to their light-harvesting properties, nickel-bipyridine (bpy) complexes have found wide use in metallaphotoredox cross-coupling reactions. Key to these transformations are Ni(I)-bpy halide intermediates that absorb a significant fraction of light at relevant cross-coupling reaction irradiation wavelengths. Herein, we report ultrafast transient absorption (TA) spectroscopy on a library of eight Ni(I)-bpy halide complexes, the first such characterization of any Ni(I) species. The TA data reveal the formation and decay of Ni(I)-to-bpy metal-to-ligand charge transfer (MLCT) excited states (10-30 ps) whose relaxation dynamics are well described by vibronic Marcus theory, spanning the normal and inverted regions as a result of simple changes to the bpy substituents. While these lifetimes are relatively long for MLCT excited states in first-row transition metal complexes, their duration precludes excited-state bimolecular reactivity in photoredox reactions. We also present a one-step method to generate an isolable, solid-state Ni(I)-bpy halide species, which decouples light-initiated reactivity from dark, thermal cycles in catalysis.

2.
J Am Chem Soc ; 146(22): 15549-15561, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38798142

ABSTRACT

High-spin molecules allow for bottom-up qubit design and are promising platforms for magnetic sensing and quantum information science. Optical addressability of molecular electron spins has also been proposed in first-row transition-metal complexes via optically detected magnetic resonance (ODMR) mechanisms analogous to the diamond-nitrogen-vacancy color center. However, significantly less progress has been made on the front of metal-free molecules, which can deliver lower costs and milder environmental impacts. At present, most luminescent open-shell organic molecules are π-diradicals, but such systems often suffer from poor ground-state open-shell characters necessary to realize a stable ground-state molecular qubit. In this work, we use alternancy symmetry to selectively minimize radical-radical interactions in the ground state, generating π-systems with high diradical characters. We call them m-dimers, referencing the need to covalently link two benzylic radicals at their meta carbon atoms for the desired symmetry. Through a detailed electronic structure analysis, we find that the excited states of alternant hydrocarbon m-diradicals contain important symmetries that can be used to construct ODMR mechanisms leading to ground-state spin polarization. The molecular parameters are set in the context of a tris(2,4,6-trichlorophenyl)methyl (TTM) radical dimer covalently tethered at the meta position, demonstrating the feasibility of alternant m-diradicals as molecular color centers.

3.
Inorg Chem ; 63(9): 4120-4131, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38376134

ABSTRACT

Transition-metal photoredox catalysis has transformed organic synthesis by harnessing light to construct complex molecules. Nickel(II)-bipyridine (bpy) aryl halide complexes are a significant class of cross-coupling catalysts that can be activated via direct light excitation. This study investigates the effects of molecular structure on the photophysics of these catalysts by considering an underexplored, structurally constrained Ni(II)-bpy aryl halide complex in which the aryl and bpy ligands are covalently tethered alongside traditional unconstrained complexes. Intriguingly, the tethered complex is photochemically stable but features a reversible Ni(II)-C(aryl) ⇄ [Ni(I)···C(aryl)•] equilibrium upon direct photoexcitation. When an electrophile is introduced during photoirradiation, we demonstrate a preference for photodissociation over recombination, rendering the parent Ni(II) complex a stable source of a reactive Ni(I) intermediate. Here, we characterize the reversible photochemical behavior of the tethered complex by kinetic analyses, quantum chemical calculations, and ultrafast transient absorption spectroscopy. Comparison to the previously characterized Ni(II)-bpy aryl halide complex indicates that the structural constraints considered here dramatically influence the excited state relaxation pathway and provide insight into the characteristics of excited-state Ni(II)-C bond homolysis and aryl radical reassociation dynamics. This study enriches the understanding of molecular structure effects in photoredox catalysis and offers new possibilities for designing customized photoactive catalysts for precise organic synthesis.

4.
J Am Chem Soc ; 145(27): 14705-14715, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37358565

ABSTRACT

Mechanistic investigations of the Ni-catalyzed asymmetric reductive alkenylation of N-hydroxyphthalimide (NHP) esters and benzylic chlorides are reported. Investigations of the redox properties of the Ni-bis(oxazoline) catalyst, the reaction kinetics, and mode of electrophile activation show divergent mechanisms for these two related transformations. Notably, the mechanism of C(sp3) activation changes from a Ni-mediated process when benzyl chlorides and Mn0 are used to a reductant-mediated process that is gated by a Lewis acid when NHP esters and tetrakis(dimethylamino)ethylene is used. Kinetic experiments show that changing the identity of the Lewis acid can be used to tune the rate of NHP ester reduction. Spectroscopic studies support a NiII-alkenyl oxidative addition complex as the catalyst resting state. DFT calculations suggest an enantiodetermining radical capture step and elucidate the origin of enantioinduction for this Ni-BOX catalyst.

5.
Inorg Chem ; 62(24): 9538-9551, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37279403

ABSTRACT

We report the facile photochemical generation of a library of Ni(I)-bpy halide complexes (Ni(I)(Rbpy)X (R = t-Bu, H, MeOOC; X = Cl, Br, I) and benchmark their relative reactivity toward competitive oxidative addition and off-cycle dimerization pathways. Structure-function relationships between the ligand set and reactivity are developed, with particular emphasis on rationalizing previously uncharacterized ligand-controlled reactivity toward high energy and challenging C(sp2)-Cl bonds. Through a dual Hammett and computational analysis, the mechanism of the formal oxidative addition is found to proceed through an SNAr-type pathway, consisting of a nucleophilic two-electron transfer between the Ni(I) 3d(z2) orbital and the Caryl-Cl σ* orbital, which contrasts the mechanism previously observed for activation of weaker C(sp2)-Br/I bonds. The bpy substituent provides a strong influence on reactivity, ultimately determining whether oxidative addition or dimerization even occurs. Here, we elucidate the origin of this substituent influence as arising from perturbations to the effective nuclear charge (Zeff) of the Ni(I) center. Electron donation to the metal decreases Zeff, which leads to a significant destabilization of the entire 3d orbital manifold. Decreasing the 3d(z2) electron binding energies leads to a powerful two-electron donor to activate strong C(sp2)-Cl bonds. These changes also prove to have an analogous effect on dimerization, with decreases in Zeff leading to more rapid dimerization. Ligand-induced modulation of Zeff and the 3d(z2) orbital energy is thus a tunable target by which the reactivity of Ni(I) complexes can be altered, providing a direct route to stimulate reactivity with even stronger C-X bonds and potentially unveiling new ways to accomplish Ni-mediated photocatalytic cycles.

6.
Inorg Chem ; 62(34): 14010-14027, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37584501

ABSTRACT

NiII(IB) dihalide [IB = (3aR,3a'R,8aS,8a'S)-2,2'-(cyclopropane-1,1-diyl)bis(3a,8a-dihydro-8H-indeno[1,2-d]-oxazole)] complexes are representative of a growing class of first-row transition-metal catalysts for the enantioselective reductive cross-coupling of C(sp2) and C(sp3) electrophiles. Recent mechanistic studies highlight the complexity of these ground-state cross-couplings but also illuminate new reactivity pathways stemming from one-electron redox and their significant sensitivities to reaction conditions. For the first time, a diverse array of spectroscopic methods coupled to electrochemistry have been applied to NiII-based precatalysts to evaluate specific ligand field effects governing key Ni-based redox potentials. We also experimentally demonstrate DMA solvent coordination to catalytically relevant Ni complexes. Coordination is shown to favorably influence key redox-based reaction steps and prevent other deleterious Ni-based equilibria. Combined with electronic structure calculations, we further provide a direct correlation between reaction intermediate frontier molecular orbital energies and cross-coupling yields. Considerations developed herein demonstrate the use of synergic spectroscopic and electrochemical methods to provide concepts for catalyst ligand design and rationalization of reaction condition optimization.

7.
Inorg Chem ; 62(7): 2959-2981, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36534001

ABSTRACT

Thirteen boronated cyanometallates [M(CN-BR3)6]3/4/5- [M = Cr, Mn, Fe, Ru, Os; BR3 = BPh3, B(2,4,6,-F3C6H2)3, B(C6F5)3] and one metalloboratonitrile [Cr(NC-BPh3)6]3- have been characterized by X-ray crystallography and spectroscopy [UV-vis-near-IR, NMR, IR, spectroelectrochemistry, and magnetic circular dichroism (MCD)]; CASSCF+NEVPT2 methods were employed in calculations of electronic structures. For (t2g)5 electronic configurations, the lowest-energy ligand-to-metal charge-transfer (LMCT) absorptions and MCD C-terms in the spectra of boronated species have been assigned to transitions from cyanide π + B-C borane σ orbitals. CASSCF+NEVPT2 calculations including t1u and t2u orbitals reproduced t1u/t2u → t2g excitation energies. Many [M(CN-BR3)6]3/4- complexes exhibited highly electrochemically reversible redox couples. Notably, the reduction formal potentials of all five [M(CN-B(C6F5)3)6]3- anions scale with the LMCT energies, and Mn(I) and Cr(II) compounds, [K(18-crown-6)]5[Mn(CN-B(C6F5)3)6] and [K(18-crown-6)]4[Cr(CN-B(C6F5)3)6], are surprisingly stable. Continuous-wave and pulsed electron paramagnetic resonance (EPR; hyperfine sublevel correlation) spectra were collected for all Cr(III) complexes; as expected, 14N hyperfine splittings are greater for (Ph4As)3[Cr(NC-BPh3)6] than for (Ph4As)3[Cr(CN-BPh3)6].

8.
Proc Natl Acad Sci U S A ; 117(28): 16187-16192, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32636264

ABSTRACT

Earth-abundant oxygen evolution catalysts (OECs) with extended stability in acid can be constructed by embedding active sites within an acid-stable metal-oxide framework. Here, we report stable NiPbOx films that are able to perform oxygen evolution reaction (OER) catalysis for extended periods of operation (>20 h) in acidic solutions of pH 2.5; conversely, native NiOx catalyst films dissolve immediately. In situ X-ray absorption spectroscopy and ex situ X-ray photoelectron spectroscopy reveal that PbO2 is unperturbed after addition of Ni and/or Fe into the lattice, which serves as an acid-stable, conductive framework for embedded OER active centers. The ability to perform OER in acid allows the mechanism of Fe doping on Ni catalysts to be further probed. Catalyst activity with Fe doping of oxidic Ni OEC under acid conditions, as compared to neutral or basic conditions, supports the contention that role of Fe3+ in enhancing catalytic activity in Ni oxide catalysts arises from its Lewis acid properties.

9.
J Am Chem Soc ; 144(45): 20804-20814, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36382468

ABSTRACT

Electron spin relaxation in paramagnetic transition metal complexes constitutes a key limitation on the growth of molecular quantum information science. However, there exist very few experimental observables for probing spin relaxation mechanisms, leading to a proliferation of inconsistent theoretical models. Here we demonstrate that spin relaxation anisotropy in pulsed electron paramagnetic resonance is a powerful spectroscopic probe for molecular spin dynamics across a library of highly coherent Cu(II) and V(IV) complexes. Neither the static spin Hamiltonian anisotropy nor contemporary computational models of spin relaxation are able to account for the experimental T1 anisotropy. Through analysis of the spin-orbit coupled wave functions, we derive an analytical theory for the T1 anisotropy that accurately reproduces the average experimental anisotropy of 2.5. Furthermore, compound-by-compound deviations from the average anisotropy provide a promising approach for observing specific ligand field and vibronic excited state coupling effects on spin relaxation. Finally, we present a simple density functional theory workflow for computationally predicting T1 anisotropy. Analysis of spin relaxation anisotropy leads to deeper fundamental understanding of spin-phonon coupling and relaxation mechanisms, promising to complement temperature-dependent relaxation rates as a key metric for understanding molecular spin qubits.

10.
J Am Chem Soc ; 144(14): 6516-6531, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35353530

ABSTRACT

Ni 2,2'-bipyridine (bpy) complexes are commonly employed photoredox catalysts of bond-forming reactions in organic chemistry. However, the mechanisms by which they operate are still under investigation. One potential mode of catalysis is via entry into Ni(I)/Ni(III) cycles, which can be made possible by light-induced, excited-state Ni(II)-C bond homolysis. Here, we report experimental and computational analyses of a library of Ni(II)-bpy aryl halide complexes, Ni(Rbpy)(R'Ph)Cl (R = MeO, t-Bu, H, MeOOC; R' = CH3, H, OMe, F, CF3), to illuminate the mechanism of excited-state bond homolysis. At given excitation wavelengths, photochemical homolysis rate constants span 2 orders of magnitude across these structures and correlate linearly with Hammett parameters of both bpy and aryl ligands, reflecting structural control over key metal-to-ligand charge-transfer (MLCT) and ligand-to-metal charge-transfer (LMCT) excited-state potential energy surfaces (PESs). Temperature- and wavelength-dependent investigations reveal moderate excited-state barriers (ΔH‡ ∼ 4 kcal mol-1) and a minimum energy excitation threshold (∼55 kcal mol-1, 525 nm), respectively. Correlations to electronic structure calculations further support a mechanism in which repulsive triplet excited-state PESs featuring a critical aryl-to-Ni LMCT lead to bond rupture. Structural control over excited-state PESs provides a rational approach to utilize photonic energy and leverage excited-state bond homolysis processes in synthetic chemistry.


Subject(s)
Heterocyclic Compounds , Nickel , Catalysis , Ligands , Nickel/chemistry
11.
Inorg Chem ; 61(50): 20493-20500, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36479938

ABSTRACT

Iron 5,10,15,20-tetra(para-N,N,N-trimethylanilinium)porphyrin (Fe-p-TMA) is a water-soluble catalyst capable of electrochemical and photochemical CO2 reduction. Although its catalytic ability has been thoroughly investigated, the mechanism and associated intermediates are largely unknown. Previous studies proposed that Fe-p-TMA enters catalytic cycles as a monomeric species. However, we demonstrate herein that, in aqueous solutions, Fe-p-TMA undergoes formation of a µ-oxo porphyrin dimer that exists in equilibrium with its monomeric form. The propensity for µ-oxo formation is highly dependent on the solution pH and ionic strength. Indeed, the µ-oxo form is stabilized in the presence of electrolytes that are key components of catalytically relevant conditions. By leveraging the ability to chemically control and spectrally address both species, we characterize their ground-state electronic structures and excited-state photodynamics. Global fitting of ultrafast transient absorption data reveals two distinct excited-state relaxation pathways: a three-component sequential model consistent with monomeric relaxation and a two-component sequential model for the µ-oxo species. Relaxation of the monomeric species is best described as a ligand-to-metal charge transfer (τ1 = ∼500 fs), an ionic strength-dependent metal-to-ligand charge transfer (τ2 = 2-4 ps), and finally relaxation of a ligand field excited state to the ground state (τ3 = 5 ps). Conversely, excited-state relaxation of the µ-oxo species proceeds via cleavage of an FeIII-O bond to generate transient FeIV═O and FeII porphyrin species (τ1 = 2 ps) that recombine to the ground-state µ-oxo species (τ2 = ∼1 ns). This latter lifetime extends to timescales relevant for chemical reactivity. It is therefore emphasized that further consideration of catalyst speciation and chemical microenvironments is necessary for elucidating the mechanisms of catalytic CO2 reduction reactions.


Subject(s)
Porphyrins , Dimerization , Water/chemistry , Carbon Dioxide , Ligands , Ferric Compounds/chemistry , Iron/chemistry
12.
J Am Chem Soc ; 143(42): 17305-17315, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34615349

ABSTRACT

Developing quantum bits (qubits) exhibiting room temperature electron spin coherence is a key goal of molecular quantum information science. At high temperatures, coherence is often limited by electron spin relaxation, measured by T1. Here we develop a simple and powerful model for predicting relative T1 relaxation times in transition metal complexes from dynamic ligand field principles. By considering the excited state origins of ground state spin-phonon coupling, we derive group theory selection rules governing which vibrational symmetries can induce decoherence. Thermal weighting of the coupling terms produces surprisingly good predictions of experimental T1 trends as a function of temperature and explains previously confounding features in spin-lattice relaxation data. We use this model to evaluate experimental relaxation rates across S = 1/2 transition metal qubit candidates with diverse structures, gaining new insights into the interplay between spin-phonon coupling and molecular symmetry. This methodology elucidates the specific vibrational modes giving rise to decoherence, providing insight into the origin of room temperature coherence in transition metal complexes. We discuss the outlook of symmetry-based modeling and design strategies for understanding molecular coherence.

13.
J Am Chem Soc ; 143(25): 9478-9488, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34128671

ABSTRACT

One of the most oft-employed methods for C-C bond formation involving the coupling of vinyl-halides with aldehydes catalyzed by Ni and Cr (Nozaki-Hiyama-Kishi, NHK) has been rendered more practical using an electroreductive manifold. Although early studies pointed to the feasibility of such a process, those precedents were never applied by others due to cumbersome setups and limited scope. Here we show that a carefully optimized electroreductive procedure can enable a more sustainable approach to NHK, even in an asymmetric fashion on highly complex medicinally relevant systems. The e-NHK can even enable non-canonical substrate classes, such as redox-active esters, to participate with low loadings of Cr when conventional chemical techniques fail. A combination of detailed kinetics, cyclic voltammetry, and in situ UV-vis spectroelectrochemistry of these processes illuminates the subtle features of this mechanistically intricate process.


Subject(s)
Alcohols/chemical synthesis , Aldehydes/chemistry , Amides/chemistry , Catalysis , Chromium/chemistry , Electrochemical Techniques/methods , Hydrocarbons, Brominated/chemistry , Nickel/chemistry , Stereoisomerism
14.
Chemistry ; 27(37): 9482-9494, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-33855760

ABSTRACT

In the past decade, transition metal complexes have gained momentum as electron spin-based quantum bit (qubit) candidates due to their synthetic tunability and long achievable coherence times. The decoherence of magnetic quantum states imposes a limit on the use of these qubits for quantum information technologies, such as quantum computing, sensing, and communication. With rapid recent development in the field of molecular quantum information science, a variety of chemical design principles for prolonging coherence in molecular transition metal qubits have been proposed. Here the spin-spin, motional, and spin-phonon regimes of decoherence are delineated, outlining design principles for each. It is shown how dynamic ligand field models can provide insights into the intramolecular vibrational contributions in the spin-phonon decoherence regime. This minireview aims to inform the development of molecular quantum technologies tailored for different environments and conditions.

15.
Proc Natl Acad Sci U S A ; 115(48): 12124-12129, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30429333

ABSTRACT

A direct, catalytic conversion of benzene to phenol would have wide-reaching economic impacts. Fe zeolites exhibit a remarkable combination of high activity and selectivity in this conversion, leading to their past implementation at the pilot plant level. There were, however, issues related to catalyst deactivation for this process. Mechanistic insight could resolve these issues, and also provide a blueprint for achieving high performance in selective oxidation catalysis. Recently, we demonstrated that the active site of selective hydrocarbon oxidation in Fe zeolites, named α-O, is an unusually reactive Fe(IV)=O species. Here, we apply advanced spectroscopic techniques to determine that the reaction of this Fe(IV)=O intermediate with benzene in fact regenerates the reduced Fe(II) active site, enabling catalytic turnover. At the same time, a small fraction of Fe(III)-phenolate poisoned active sites form, defining a mechanism for catalyst deactivation. Density-functional theory calculations provide further insight into the experimentally defined mechanism. The extreme reactivity of α-O significantly tunes down (eliminates) the rate-limiting barrier for aromatic hydroxylation, leading to a diffusion-limited reaction coordinate. This favors hydroxylation of the rapidly diffusing benzene substrate over the slowly diffusing (but more reactive) oxygenated product, thereby enhancing selectivity. This defines a mechanism to simultaneously attain high activity (conversion) and selectivity, enabling the efficient oxidative upgrading of inert hydrocarbon substrates.


Subject(s)
Benzene/chemistry , Iron/chemistry , Zeolites/chemistry , Catalysis , Catalytic Domain , Hydroxylation , Kinetics , Models, Molecular , Molecular Structure , Oxidation-Reduction , Oxygen/chemistry , Phenol/chemistry
16.
Inorg Chem ; 59(13): 8707-8715, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32510941

ABSTRACT

Iron porphyrin carbenes (IPCs) are important reaction intermediates in engineered carbene transferase enzymes and homogeneous catalysis. However, discrepancies between theory and experiment complicate the understanding of IPC electronic structure. In the literature, this has been framed as whether the ground state is an open- vs closed-shell singlet (OSS vs CSS). Here we investigate the structurally dependent ground and excited spin-state energetics of a free carbene and its IPC analogs with variable trans axial ligands. In particular, for IPCs, multireference ab initio wave function methods are more consistent with experiment and predict a mixed singlet ground state that is dominated by the CSS (Fe(II) ← {:C(X)Y}0) configuration (i.e., electrophilic carbene) but that also has a small, non-negligible contribution from an Fe(III)-{C(X)Y}-• configuration (hole in d(xz), i.e., radical carbene). In the multireference approach, the "OSS-like" excited states are metal-to-ligand charge transfer (MLCT) in nature and are energetically well above the CSS-dominated ground state. The first, lowest energy of these "OSS-like" excited states is predicted to be heavily weighted toward the Fe(III)-{C(X)Y}-• (hole in d(yz)) configuration. As expected from exchange considerations, this state falls energetically above a triplet of the same configuration. Furthermore, potential energy surfaces (PESs) along the IPC Fe-C(carbene) bond elongation exhibit increasingly strong mixings between CSS/OSS characters, with the Fe(III)-{C(X)Y}-• configuration (hole in d(xz)) growing in weight in the ground state during bond elongation. The relative degree of electrophilic/radical carbene character along this structurally relevant PES can potentially play a role in reactivity and selectivity patterns in catalysis. Future studies on IPC reaction coordinates should evaluate contributions from ground and excited state multireference character.

17.
Inorg Chem ; 59(14): 9594-9604, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32584033

ABSTRACT

Complexes with the formula [M(diimine)(CN-BR3)4]2-, where diimine = bipyridine (bpy), phenanthroline (phen), 3,5-trifluoromethylbipyridine (flpy), R = Ph, C6F5, and M = FeII, RuII, were synthesized and characterized by X-ray crystal structure analysis, UV-visible spectroscopy, IR spectroscopy, and voltammetry. Three highly soluble complexes, [FeII(bpy)(CN-B(C6F5)3)4]2-, [RuII(bpy)(CN-B(C6F5)3)4]2-, and [RuII(flpy)(CN-B(C6F5)3)4]2-, exhibit electrochemically reversible redox reactions, with large potential differences between the bpy0/- or flpy0/- and MIII/II couples of 3.27, 3.52, and 3.19 V, respectively. CASSCF+NEVPT2 calculations accurately reproduce the effects of borane coordination on the electronic structures and spectra of cyanometallates.

18.
Phys Chem Chem Phys ; 22(20): 11249-11265, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32211668

ABSTRACT

Quantum coherence of S = 1/2 transition metal-based quantum bits (qubits) is strongly influenced by the magnitude of spin-phonon coupling. While this coupling is recognized as deriving from dynamic distortions about the first coordination sphere of the metal, a general model for understanding and quantifying ligand field contributions has not been established. Here we derive a general ligand field theory model to describe and quantify the nature of spin-phonon coupling terms in S = 1/2 transition metal complexes. We show that the coupling term for a given vibrational mode is governed by: (1) the magnitude of the metal-based spin-orbit coupling constant, (2) the magnitude and gradient in the ligand field excited state energy, which determines the magnitude of ground state orbital angular momentum, and (3) dynamic relativistic nephelauxetic contributions reflecting the magnitude and gradient in the covalency of the ligand-metal bonds. From an extensive series of density functional theory (DFT) and time-dependent DFT (TDDFT) calculations calibrated to a range of experimental data, spin-phonon coupling terms describing minimalistic D4h/D2d [CuCl4]2- and C4v [VOCl4]2- complexes translate to and correlate with experimental quantum coherence properties observed for Cu(ii)- and V(iv)-based molecular qubits with different ligand sets, geometries, and coordination numbers. While providing a fundamental framework and means to benchmark current qubits, the model and methodology described herein can be used to screen any S = 1/2 molecular qubit candidate and guide the discovery of room temperature coherent materials for quantum information processing.

19.
J Phys Chem A ; 124(48): 9915-9922, 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33226235

ABSTRACT

Multireference electronic structure calculations consistent with known experimental data have elucidated a novel mechanism for photo-triggered Ni(II)-C homolytic bond dissociation in Ni 2,2'-bipyridine (bpy) photoredox catalysts. Previously, a thermally assisted dissociation from the lowest energy triplet ligand field excited state was proposed and supported by density functional theory (DFT) calculations that reveal a barrier of ∼30 kcal mol-1. In contrast, multireference ab initio calculations suggest that this process is disfavored, with barrier heights of ∼70 kcal mol-1, and highlight important ligand noninnocent and multiconfigurational contributions to excited state relaxation and bond dissociation processes that are not captured with DFT. In the multireference description, photo-triggered Ni(II)-C homolytic bond dissociation occurs via initial population of a singlet Ni(II)-to-bpy metal-to-ligand charge transfer (1MLCT) excited state, followed by intersystem crossing and aryl-to-Ni(III) charge transfer, overall a formal two-electron transfer process driven by a single photon. This results in repulsive triplet excited states from which spontaneous homolytic bond dissociation can occur, effectively competing with relaxation to the lowest energy nondissociative triplet Ni(II) ligand field excited state. These findings guide important electronic structure considerations for the experimental and computational elucidation of the mechanisms of ground and excited state cross-coupling catalysis mediated by Ni heteroaromatic complexes.

20.
J Phys Chem A ; 124(44): 9252-9260, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33112149

ABSTRACT

Recent interest in transition-metal complexes as potential quantum bits (qubits) has reinvigorated the investigation of fundamental contributions to electron spin relaxation in various ligand scaffolds. From quantum computers to chemical and biological sensors, interest in leveraging the quantum properties of these molecules has opened a discussion of the requirements to maintain coherence over a large temperature range, including near room temperature. Here we compare temperature-, magnetic field position-, and concentration-dependent electron spin relaxation in copper(II) phthalocyanine (CuPc) and vanadyl phthalocyanine (VOPc) doped into diamagnetic hosts. While VOPc demonstrates coherence up to room temperature, CuPc coherence times become rapidly T1-limited with increasing temperature, despite featuring a more covalent ground-state wave function than VOPc. As rationalized by a ligand field model, this difference is ascribed to different spin-orbit coupling (SOC) constants for Cu(II) versus V(IV). The manifestation of SOC contributions to spin-phonon coupling and electron spin relaxation in different ligand fields is discussed, allowing for a further understanding of the competing roles of SOC and covalency in electron spin relaxation.

SELECTION OF CITATIONS
SEARCH DETAIL