Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Cell ; 159(1): 200-214, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25259927

ABSTRACT

Invertebrate model systems are powerful tools for studying human disease owing to their genetic tractability and ease of screening. We conducted a mosaic genetic screen of lethal mutations on the Drosophila X chromosome to identify genes required for the development, function, and maintenance of the nervous system. We identified 165 genes, most of whose function has not been studied in vivo. In parallel, we investigated rare variant alleles in 1,929 human exomes from families with unsolved Mendelian disease. Genes that are essential in flies and have multiple human homologs were found to be likely to be associated with human diseases. Merging the human data sets with the fly genes allowed us to identify disease-associated mutations in six families and to provide insights into microcephaly associated with brain dysgenesis. This bidirectional synergism between fly genetics and human genomics facilitates the functional annotation of evolutionarily conserved genes involved in human health.


Subject(s)
Disease/genetics , Drosophila melanogaster/genetics , Genetic Testing , Inheritance Patterns , RNA Interference , Animals , Disease Models, Animal , Humans , X Chromosome
2.
Annu Rev Neurosci ; 37: 137-59, 2014.
Article in English | MEDLINE | ID: mdl-24821430

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disease, yet the underlying causative molecular mechanisms are ill defined. Numerous observations based on drug studies and mutations in genes that cause PD point to a complex set of rather subtle mitochondrial defects that may be causative. Indeed, intensive investigation of these genes in model organisms has revealed roles in the electron transport chain, mitochondrial protein homeostasis, mitophagy, and the fusion and fission of mitochondria. Here, we attempt to synthesize results from experimental studies in diverse systems to define the precise function of these PD genes, as well as their interplay with other genes that affect mitochondrial function. We propose that subtle mitochondrial defects in combination with other insults trigger the onset and progression of disease, in both familial and idiopathic PD.


Subject(s)
Mitochondria/physiology , Nerve Tissue Proteins/physiology , Parkinson Disease/physiopathology , Animals , Humans , Mitochondria/genetics , Models, Biological , Nerve Tissue Proteins/genetics , Neurons/physiology , Parkinson Disease/genetics
4.
PLoS Biol ; 13(7): e1002197, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26176594

ABSTRACT

Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration--defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise.


Subject(s)
Drosophila Proteins/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Photoreceptor Cells, Invertebrate/radiation effects , Retinal Diseases/genetics , Adenosine Triphosphate/biosynthesis , Animals , Citrate (si)-Synthase/genetics , Drosophila , Drosophila Proteins/metabolism , Electroretinography , Endocytosis , Mitochondria/genetics , Mitochondrial Proteins/metabolism , Oxidative Stress , Pyruvate Dehydrogenase Complex/genetics , Pyruvate Dehydrogenase Complex/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Reactive Oxygen Species/metabolism , Rhodopsin/metabolism , Vision, Ocular
5.
Genome Res ; 24(10): 1707-18, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25258387

ABSTRACT

Forward genetic screens using chemical mutagens have been successful in defining the function of thousands of genes in eukaryotic model organisms. The main drawback of this strategy is the time-consuming identification of the molecular lesions causative of the phenotypes of interest. With whole-genome sequencing (WGS), it is now possible to sequence hundreds of strains, but determining which mutations are causative among thousands of polymorphisms remains challenging. We have sequenced 394 mutant strains, generated in a chemical mutagenesis screen, for essential genes on the Drosophila X chromosome and describe strategies to reduce the number of candidate mutations from an average of -3500 to 35 single-nucleotide variants per chromosome. By combining WGS with a rough mapping method based on large duplications, we were able to map 274 (-70%) mutations. We show that these mutations are causative, using small 80-kb duplications that rescue lethality. Hence, our findings demonstrate that combining rough mapping with WGS dramatically expands the toolkit necessary for assigning function to genes.


Subject(s)
Chromosome Mapping/methods , Drosophila melanogaster/genetics , Mutagenesis , Animals , Ethyl Methanesulfonate , Female , Genes, Essential , Genes, Insect , Male , Molecular Sequence Data , Mutagens , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , X Chromosome
6.
Nat Methods ; 8(9): 737-43, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21985007

ABSTRACT

We demonstrate the versatility of a collection of insertions of the transposon Minos-mediated integration cassette (MiMIC), in Drosophila melanogaster. MiMIC contains a gene-trap cassette and the yellow+ marker flanked by two inverted bacteriophage ΦC31 integrase attP sites. MiMIC integrates almost at random in the genome to create sites for DNAmanipulation. The attP sites allow the replacement of the intervening sequence of the transposon with any other sequence through recombinase-mediated cassette exchange (RMCE). We can revert insertions that function as gene traps and cause mutant phenotypes to revert to wild type by RMCE and modify insertions to control GAL4 or QF overexpression systems or perform lineage analysis using the Flp recombinase system. Insertions in coding introns can be exchanged with protein-tag cassettes to create fusion proteins to follow protein expression and perform biochemical experiments. The applications of MiMIC vastly extend the D. melanogaster toolkit.


Subject(s)
DNA Transposable Elements/genetics , Drosophila melanogaster/genetics , Animals , Bioengineering , Drosophila Proteins/genetics , Gene Expression Regulation , Introns , Mutagenesis, Insertional , Recombinant Fusion Proteins/analysis , Repetitive Sequences, Nucleic Acid
7.
Cell Rep ; 38(11): 110517, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35294868

ABSTRACT

Individuals with autism spectrum disorder (ASD) exhibit an increased burden of de novo mutations (DNMs) in a broadening range of genes. While these studies have implicated hundreds of genes in ASD pathogenesis, which DNMs cause functional consequences in vivo remains unclear. We functionally test the effects of ASD missense DNMs using Drosophila through "humanization" rescue and overexpression-based strategies. We examine 79 ASD variants in 74 genes identified in the Simons Simplex Collection and find 38% of them to cause functional alterations. Moreover, we identify GLRA2 as the cause of a spectrum of neurodevelopmental phenotypes beyond ASD in 13 previously undiagnosed subjects. Functional characterization of variants in ASD candidate genes points to conserved neurobiological mechanisms and facilitates gene discovery for rare neurodevelopmental diseases.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Drosophila , Neurodevelopmental Disorders , Receptors, Glycine , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Autistic Disorder/genetics , Drosophila/genetics , Genetic Predisposition to Disease , Humans , Neurodevelopmental Disorders/genetics , Receptors, Glycine/genetics
8.
Elife ; 102021 05 26.
Article in English | MEDLINE | ID: mdl-34036937

ABSTRACT

Osteogenesis imperfecta (OI) is characterized by short stature, skeletal deformities, low bone mass, and motor deficits. A subset of OI patients also present with joint hypermobility; however, the role of tendon dysfunction in OI pathogenesis is largely unknown. Using the Crtap-/- mouse model of severe, recessive OI, we found that mutant Achilles and patellar tendons were thinner and weaker with increased collagen cross-links and reduced collagen fibril size at 1- and 4-months compared to wildtype. Patellar tendons from Crtap-/- mice also had altered numbers of CD146+CD200+ and CD146-CD200+ progenitor-like cells at skeletal maturity. RNA-seq analysis of Achilles and patellar tendons from 1-month Crtap-/- mice revealed dysregulation in matrix and tendon marker gene expression concomitant with predicted alterations in TGF-ß, inflammatory, and metabolic signaling. At 4-months, Crtap-/- mice showed increased αSMA, MMP2, and phospho-NFκB staining in the patellar tendon consistent with excess matrix remodeling and tissue inflammation. Finally, a series of behavioral tests showed severe motor impairments and reduced grip strength in 4-month Crtap-/- mice - a phenotype that correlates with the tendon pathology.


Subject(s)
Achilles Tendon/pathology , Extracellular Matrix Proteins/deficiency , Motor Activity , Osteogenesis Imperfecta/pathology , Osteogenesis Imperfecta/physiopathology , Patellar Ligament/pathology , Achilles Tendon/metabolism , Actins/metabolism , Age Factors , Animals , Disease Models, Animal , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Extracellular Matrix Proteins/genetics , Fibrillar Collagens/genetics , Fibrillar Collagens/metabolism , Genes, Recessive , Genetic Predisposition to Disease , Hand Strength , Matrix Metalloproteinase 2/metabolism , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Molecular Chaperones/genetics , NF-kappa B/metabolism , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/metabolism , Patellar Ligament/metabolism , Phenotype , Phosphorylation , Physical Endurance , Stem Cells/metabolism , Stem Cells/pathology
10.
Dev Cell ; 45(2): 226-244.e8, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29689197

ABSTRACT

Nuclei are actively positioned and anchored to the cytoskeleton via the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex. We identified mutations in the Parkin-like E3 ubiquitin ligase Ariadne-1 (Ari-1) that affect the localization and distribution of LINC complex members in Drosophila. ari-1 mutants exhibit nuclear clustering and morphology defects in larval muscles. We show that Ari-1 mono-ubiquitinates the core LINC complex member Koi. Surprisingly, we discovered functional redundancy between Parkin and Ari-1: increasing Parkin expression rescues ari-1 mutant phenotypes and vice versa. We further show that rare variants in the human homolog of ari-1 (ARIH1) are associated with thoracic aortic aneurysms and dissections, conditions resulting from smooth muscle cell (SMC) dysfunction. Human ARIH1 rescues fly ari-1 mutant phenotypes, whereas human variants found in patients fail to do so. In addition, SMCs obtained from patients display aberrant nuclear morphology. Hence, ARIH1 is critical in anchoring myonuclei to the cytoskeleton.


Subject(s)
Aortic Aneurysm/pathology , Carrier Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Mutation , Myocytes, Smooth Muscle/pathology , Ubiquitin-Protein Ligases/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Aortic Aneurysm/genetics , Aortic Aneurysm/metabolism , Carrier Proteins/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cell Nucleus/pathology , Child, Preschool , Cytoskeleton , Drosophila Proteins/genetics , Drosophila melanogaster/growth & development , Female , Humans , Male , Middle Aged , Myocytes, Smooth Muscle/metabolism , Pedigree , Phenotype , Ubiquitin-Protein Ligases/genetics , Young Adult
11.
Neuron ; 93(1): 115-131, 2017 Jan 04.
Article in English | MEDLINE | ID: mdl-28017472

ABSTRACT

We previously identified mutations in Nardilysin (dNrd1) in a forward genetic screen designed to isolate genes whose loss causes neurodegeneration in Drosophila photoreceptor neurons. Here we show that NRD1 is localized to mitochondria, where it recruits mitochondrial chaperones and assists in the folding of α-ketoglutarate dehydrogenase (OGDH), a rate-limiting enzyme in the Krebs cycle. Loss of Nrd1 or Ogdh leads to an increase in α-ketoglutarate, a substrate for OGDH, which in turn leads to mTORC1 activation and a subsequent reduction in autophagy. Inhibition of mTOR activity by rapamycin or partially restoring autophagy delays neurodegeneration in dNrd1 mutant flies. In summary, this study reveals a novel role for NRD1 as a mitochondrial co-chaperone for OGDH and provides a mechanistic link between mitochondrial metabolic dysfunction, mTORC1 signaling, and impaired autophagy in neurodegeneration.


Subject(s)
Autophagy/genetics , Drosophila Proteins/genetics , Ketoglutarate Dehydrogenase Complex/genetics , Metalloendopeptidases/genetics , Mitochondria/metabolism , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Drosophila , Drosophila melanogaster , Ketoglutaric Acids/metabolism , Lysine/metabolism , Mechanistic Target of Rapamycin Complex 1 , Metalloendopeptidases/metabolism , Molecular Chaperones , Neurodegenerative Diseases/genetics
12.
Elife ; 52016 06 25.
Article in English | MEDLINE | ID: mdl-27343351

ABSTRACT

Mutations in Frataxin (FXN) cause Friedreich's ataxia (FRDA), a recessive neurodegenerative disorder. Previous studies have proposed that loss of FXN causes mitochondrial dysfunction, which triggers elevated reactive oxygen species (ROS) and leads to the demise of neurons. Here we describe a ROS independent mechanism that contributes to neurodegeneration in fly FXN mutants. We show that loss of frataxin homolog (fh) in Drosophila leads to iron toxicity, which in turn induces sphingolipid synthesis and ectopically activates 3-phosphoinositide dependent protein kinase-1 (Pdk1) and myocyte enhancer factor-2 (Mef2). Dampening iron toxicity, inhibiting sphingolipid synthesis by Myriocin, or reducing Pdk1 or Mef2 levels, all effectively suppress neurodegeneration in fh mutants. Moreover, increasing dihydrosphingosine activates Mef2 activity through PDK1 in mammalian neuronal cell line suggesting that the mechanisms are evolutionarily conserved. Our results indicate that an iron/sphingolipid/Pdk1/Mef2 pathway may play a role in FRDA.


Subject(s)
3-Phosphoinositide-Dependent Protein Kinases/metabolism , Drosophila Proteins/metabolism , Friedreich Ataxia/physiopathology , Iron-Binding Proteins/genetics , Iron/toxicity , Myogenic Regulatory Factors/metabolism , Sphingolipids/biosynthesis , Animals , Disease Models, Animal , Drosophila , Frataxin
13.
Article in English | MEDLINE | ID: mdl-26289428

ABSTRACT

FlyVar is a publicly and freely available platform that addresses the increasing need of next generation sequencing data analysis in the Drosophila research community. It is composed of three parts. First, a database that contains 5.94 million DNA polymorphisms found in Drosophila melanogaster derived from whole genome shotgun sequencing of 612 genomes of D. melanogaster. In addition, a list of 1094 dispensable genes has been identified. Second, a graphical user interface (GUI) has been implemented to allow easy and flexible queries of the database. Third, a set of interactive online tools enables filtering and annotation of genomic sequences obtained from individual D. melanogaster strains to identify candidate mutations. FlyVar permits the analysis of next generation sequencing data without the need of extensive computational training or resources. Database URL: www.iipl.fudan.edu.cn/FlyVar.


Subject(s)
Databases, Genetic , Genes, Insect , Molecular Sequence Annotation , Polymorphism, Genetic , User-Computer Interface , Animals , Drosophila melanogaster
SELECTION OF CITATIONS
SEARCH DETAIL