Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 628(8006): 130-138, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448586

ABSTRACT

Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1-7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8-11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.


Subject(s)
Biomarkers , Genome-Wide Association Study , Metabolomics , Female , Humans , Pregnancy , Acetone/blood , Acetone/metabolism , Biomarkers/blood , Biomarkers/metabolism , Cholestasis, Intrahepatic/blood , Cholestasis, Intrahepatic/genetics , Cholestasis, Intrahepatic/metabolism , Cohort Studies , Genome-Wide Association Study/methods , Hypertension/blood , Hypertension/genetics , Hypertension/metabolism , Lipoproteins/genetics , Lipoproteins/metabolism , Magnetic Resonance Spectroscopy , Mendelian Randomization Analysis , Metabolic Networks and Pathways/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Pregnancy Complications/blood , Pregnancy Complications/genetics , Pregnancy Complications/metabolism
2.
Am J Med Genet B Neuropsychiatr Genet ; 195(2): e32955, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37534875

ABSTRACT

The evolving field of multi-omics combines data and provides methods for simultaneous analysis across several omics levels. Here, we integrated genomics (transmitted and non-transmitted polygenic scores [PGSs]), epigenomics, and metabolomics data in a multi-omics framework to identify biomarkers for Attention-Deficit/Hyperactivity Disorder (ADHD) and investigated the connections among the three omics levels. We first trained single- and next multi-omics models to differentiate between cases and controls in 596 twins (cases = 14.8%) from the Netherlands Twin Register (NTR) demonstrating reasonable in-sample prediction through cross-validation. The multi-omics model selected 30 PGSs, 143 CpGs, and 90 metabolites. We confirmed previous associations of ADHD with glucocorticoid exposure and the transmembrane protein family TMEM, show that the DNA methylation of the MAD1L1 gene associated with ADHD has a relation with parental smoking behavior, and present novel findings including associations between indirect genetic effects and CpGs of the STAP2 gene. However, out-of-sample prediction in NTR participants (N = 258, cases = 14.3%) and in a clinical sample (N = 145, cases = 51%) did not perform well (range misclassification was [0.40, 0.57]). The results highlighted connections between omics levels, with the strongest connections between non-transmitted PGSs, CpGs, and amino acid levels and show that multi-omics designs considering interrelated omics levels can help unravel the complex biology underlying ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Humans , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/psychology , Epigenomics , Multiomics , Genomics , Metabolomics
3.
BMC Med ; 21(1): 508, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38129841

ABSTRACT

BACKGROUND: The influence of genetics and environment on the association of the plasma proteome with body mass index (BMI) and changes in BMI remains underexplored, and the links to other omics in these associations remain to be investigated. We characterized protein-BMI trajectory associations in adolescents and adults and how these connect to other omics layers. METHODS: Our study included two cohorts of longitudinally followed twins: FinnTwin12 (N = 651) and the Netherlands Twin Register (NTR) (N = 665). Follow-up comprised 4 BMI measurements over approximately 6 (NTR: 23-27 years old) to 10 years (FinnTwin12: 12-22 years old), with omics data collected at the last BMI measurement. BMI changes were calculated in latent growth curve models. Mixed-effects models were used to quantify the associations between the abundance of 439 plasma proteins with BMI at blood sampling and changes in BMI. In FinnTwin12, the sources of genetic and environmental variation underlying the protein abundances were quantified by twin models, as were the associations of proteins with BMI and BMI changes. In NTR, we investigated the association of gene expression of genes encoding proteins identified in FinnTwin12 with BMI and changes in BMI. We linked identified proteins and their coding genes to plasma metabolites and polygenic risk scores (PRS) applying mixed-effects models and correlation networks. RESULTS: We identified 66 and 14 proteins associated with BMI at blood sampling and changes in BMI, respectively. The average heritability of these proteins was 35%. Of the 66 BMI-protein associations, 43 and 12 showed genetic and environmental correlations, respectively, including 8 proteins showing both. Similarly, we observed 7 and 3 genetic and environmental correlations between changes in BMI and protein abundance, respectively. S100A8 gene expression was associated with BMI at blood sampling, and the PRG4 and CFI genes were associated with BMI changes. Proteins showed strong connections with metabolites and PRSs, but we observed no multi-omics connections among gene expression and other omics layers. CONCLUSIONS: Associations between the proteome and BMI trajectories are characterized by shared genetic, environmental, and metabolic etiologies. We observed few gene-protein pairs associated with BMI or changes in BMI at the proteome and transcriptome levels.


Subject(s)
Multiomics , Proteome , Humans , Adolescent , Young Adult , Adult , Child , Body Mass Index , Proteome/genetics , Twins, Monozygotic/genetics , Longitudinal Studies
4.
Behav Genet ; 53(2): 101-117, 2023 03.
Article in English | MEDLINE | ID: mdl-36344863

ABSTRACT

This study introduces and illustrates the potential of an integrated multi-omics approach in investigating the underlying biology of complex traits such as childhood aggressive behavior. In 645 twins (cases = 42%), we trained single- and integrative multi-omics models to identify biomarkers for subclinical aggression and investigated the connections among these biomarkers. Our data comprised transmitted and two non-transmitted polygenic scores (PGSs) for 15 traits, 78,772 CpGs, and 90 metabolites. The single-omics models selected 31 PGSs, 1614 CpGs, and 90 metabolites, and the multi-omics model comprised 44 PGSs, 746 CpGs, and 90 metabolites. The predictive accuracy for these models in the test (N = 277, cases = 42%) and independent clinical data (N = 142, cases = 45%) ranged from 43 to 57%. We observed strong connections between DNA methylation, amino acids, and parental non-transmitted PGSs for ADHD, Autism Spectrum Disorder, intelligence, smoking initiation, and self-reported health. Aggression-related omics traits link to known and novel risk factors, including inflammation, carcinogens, and smoking.


Subject(s)
Autism Spectrum Disorder , Multiomics , Humans , Cognition , Biomarkers , Aggression
5.
Mol Psychiatry ; 26(6): 2148-2162, 2021 06.
Article in English | MEDLINE | ID: mdl-33420481

ABSTRACT

DNA methylation profiles of aggressive behavior may capture lifetime cumulative effects of genetic, stochastic, and environmental influences associated with aggression. Here, we report the first large meta-analysis of epigenome-wide association studies (EWAS) of aggressive behavior (N = 15,324 participants). In peripheral blood samples of 14,434 participants from 18 cohorts with mean ages ranging from 7 to 68 years, 13 methylation sites were significantly associated with aggression (alpha = 1.2 × 10-7; Bonferroni correction). In cord blood samples of 2425 children from five cohorts with aggression assessed at mean ages ranging from 4 to 7 years, 83% of these sites showed the same direction of association with childhood aggression (r = 0.74, p = 0.006) but no epigenome-wide significant sites were found. Top-sites (48 at a false discovery rate of 5% in the peripheral blood meta-analysis or in a combined meta-analysis of peripheral blood and cord blood) have been associated with chemical exposures, smoking, cognition, metabolic traits, and genetic variation (mQTLs). Three genes whose expression levels were associated with top-sites were previously linked to schizophrenia and general risk tolerance. At six CpGs, DNA methylation variation in blood mirrors variation in the brain. On average 44% (range = 3-82%) of the aggression-methylation association was explained by current and former smoking and BMI. These findings point at loci that are sensitive to chemical exposures with potential implications for neuronal functions. We hope these results to be a starting point for studies leading to applications as peripheral biomarkers and to reveal causal relationships with aggression and related traits.


Subject(s)
DNA Methylation , Epigenome , Adolescent , Adult , Aged , Aggression , Child , Child, Preschool , CpG Islands/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Genome-Wide Association Study , Humans , Longevity , Middle Aged , Young Adult
6.
Twin Res Hum Genet ; 23(3): 145-155, 2020 06.
Article in English | MEDLINE | ID: mdl-32635965

ABSTRACT

Metabolites are small molecules involved in cellular metabolism where they act as reaction substrates or products. The term 'metabolomics' refers to the comprehensive study of these molecules. The concentrations of metabolites in biological tissues are under genetic control, but this is limited by environmental factors such as diet. In adult mono- and dizygotic twin pairs, we estimated the contribution of genetic and shared environmental influences on metabolite levels by structural equation modeling and tested whether the familial resemblance for metabolite levels is mainly explained by genetic or by environmental factors that are shared by family members. Metabolites were measured across three platforms: two based on proton nuclear magnetic resonance techniques and one employing mass spectrometry. These three platforms comprised 237 single metabolic traits of several chemical classes. For the three platforms, metabolites were assessed in 1407, 1037 and 1116 twin pairs, respectively. We carried out power calculations to establish what percentage of shared environmental variance could be detected given these sample sizes. Our study did not find evidence for a systematic contribution of shared environment, defined as the influence of growing up together in the same household, on metabolites assessed in adulthood. Significant heritability was observed for nearly all 237 metabolites; significant contribution of the shared environment was limited to 6 metabolites. The top quartile of the heritability distribution was populated by 5 of the 11 investigated chemical classes. In this quartile, metabolites of the class lipoprotein were significantly overrepresented, whereas metabolites of classes glycerophospholipids and glycerolipids were significantly underrepresented.


Subject(s)
Metabolome/genetics , Metabolomics , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics , Adult , Diet , Diseases in Twins , Environment , Family , Female , Gene-Environment Interaction , Humans , Male , Phenotype
7.
Eur Child Adolesc Psychiatry ; 27(9): 1105-1121, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29845340

ABSTRACT

Childhood aggression and its resulting consequences inflict a huge burden on affected children, their relatives, teachers, peers and society as a whole. Aggression during childhood rarely occurs in isolation and is correlated with other symptoms of childhood psychopathology. In this paper, we aim to describe and improve the understanding of the co-occurrence of aggression with other forms of childhood psychopathology. We focus on the co-occurrence of aggression and other childhood behavioural and emotional problems, including other externalising problems, attention problems and anxiety-depression. The data were brought together within the EU-ACTION (Aggression in Children: unravelling gene-environment interplay to inform Treatment and InterventiON strategies) project. We analysed the co-occurrence of aggression and other childhood behavioural and emotional problems as a function of the child's age (ages 3 through 16 years), gender, the person rating the behaviour (father, mother or self) and assessment instrument. The data came from six large population-based European cohort studies from the Netherlands (2x), the UK, Finland and Sweden (2x). Multiple assessment instruments, including the Child Behaviour Checklist (CBCL), the Strengths and Difficulties Questionnaire (SDQ) and Multidimensional Peer Nomination Inventory (MPNI), were used. There was a good representation of boys and girls in each age category, with data for 30,523 3- to 4-year-olds (49.5% boys), 20,958 5- to 6-year-olds (49.6% boys), 18,291 7- to 8-year-olds (49.0% boys), 27,218 9- to 10-year-olds (49.4% boys), 18,543 12- to 13-year-olds (48.9% boys) and 10,088 15- to 16-year-olds (46.6% boys). We replicated the well-established gender differences in average aggression scores at most ages for parental ratings. The gender differences decreased with age and were not present for self-reports. Aggression co-occurred with the majority of other behavioural and social problems, from both externalising and internalising domains. At each age, the co-occurrence was particularly prevalent for aggression and oppositional and ADHD-related problems, with correlations of around 0.5 in general. Aggression also showed substantial associations with anxiety-depression and other internalizing symptoms (correlations around 0.4). Co-occurrence for self-reported problems was somewhat higher than for parental reports, but we found neither rater differences, nor differences across assessment instruments in co-occurrence patterns. There were large similarities in co-occurrence patterns across the different European countries. Finally, co-occurrence was generally stable across age and sex, and if any change was observed, it indicated stronger correlations when children grew older. We present an online tool to visualise these associations as a function of rater, gender, instrument and cohort. In addition, we present a description of the full EU-ACTION projects, its first results and the future perspectives.


Subject(s)
Affective Symptoms/psychology , Aggression/psychology , Child Behavior Disorders/psychology , Adolescent , Child , Child, Preschool , Cohort Studies , Female , Humans , Male
8.
Am J Med Genet B Neuropsychiatr Genet ; 171(5): 719-32, 2016 07.
Article in English | MEDLINE | ID: mdl-26913573

ABSTRACT

Human aggression encompasses a wide range of behaviors and is related to many psychiatric disorders. We introduce the different classification systems of aggression and related disorders as a basis for discussing biochemical biomarkers and then present an overview of studies in humans (published between 1990 and 2015) that reported statistically significant associations of biochemical biomarkers with aggression, DSM-IV disorders involving aggression, and their subtypes. The markers are of different types, including inflammation markers, neurotransmitters, lipoproteins, and hormones from various classes. Most studies focused on only a limited portfolio of biomarkers, frequently a specific class only. When integrating the data, it is clear that compounds from several biological pathways have been found to be associated with aggressive behavior, indicating complexity and the need for a broad approach. In the second part of the paper, using examples from the aggression literature and psychiatric metabolomics studies, we argue that a better understanding of aggression would benefit from a more holistic approach such as provided by metabolomics. © 2016 Wiley Periodicals, Inc.


Subject(s)
Aggression/classification , Aggression/physiology , Biomarkers , Diagnostic and Statistical Manual of Mental Disorders , Humans , Mental Disorders , Metabolomics/methods , Psychiatry
9.
Gigascience ; 132024 01 02.
Article in English | MEDLINE | ID: mdl-38217405

ABSTRACT

BACKGROUND: Applying good data management and FAIR (Findable, Accessible, Interoperable, and Reusable) data principles in research projects can help disentangle knowledge discovery, study result reproducibility, and data reuse in future studies. Based on the concepts of the original FAIR principles for research data, FAIR principles for research software were recently proposed. FAIR Digital Objects enable discovery and reuse of Research Objects, including computational workflows for both humans and machines. Practical examples can help promote the adoption of FAIR practices for computational workflows in the research community. We developed a multi-omics data analysis workflow implementing FAIR practices to share it as a FAIR Digital Object. FINDINGS: We conducted a case study investigating shared patterns between multi-omics data and childhood externalizing behavior. The analysis workflow was implemented as a modular pipeline in the workflow manager Nextflow, including containers with software dependencies. We adhered to software development practices like version control, documentation, and licensing. Finally, the workflow was described with rich semantic metadata, packaged as a Research Object Crate, and shared via WorkflowHub. CONCLUSIONS: Along with the packaged multi-omics data analysis workflow, we share our experiences adopting various FAIR practices and creating a FAIR Digital Object. We hope our experiences can help other researchers who develop omics data analysis workflows to turn FAIR principles into practice.


Subject(s)
Multiomics , Software , Humans , Child , Workflow , Reproducibility of Results , Metadata
10.
Nat Hum Behav ; 7(6): 849-860, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37188734

ABSTRACT

In the classical twin design, researchers compare trait resemblance in cohorts of identical and non-identical twins to understand how genetic and environmental factors correlate with resemblance in behaviour and other phenotypes. The twin design is also a valuable tool for studying causality, intergenerational transmission, and gene-environment correlation and interaction. Here we review recent developments in twin studies, recent results from twin studies of new phenotypes and recent insights into twinning. We ask whether the results of existing twin studies are representative of the general population and of global diversity, and we conclude that stronger efforts to increase representativeness are needed. We provide an updated overview of twin concordance and discordance for major diseases and mental disorders, which conveys a crucial message: genetic influences are not as deterministic as many believe. This has important implications for public understanding of genetic risk prediction tools, as the accuracy of genetic predictions can never exceed identical twin concordance rates.


Subject(s)
Mental Disorders , Twins, Dizygotic , Humans , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics , Mental Disorders/genetics , Risk Factors , Health Behavior
11.
Handb Clin Neurol ; 197: 13-44, 2023.
Article in English | MEDLINE | ID: mdl-37633706

ABSTRACT

There is substantial variation between humans in aggressive behavior, with its biological etiology and molecular genetic basis mostly unknown. This review chapter offers an overview of genomic and omics studies revealing the genetic contribution to aggression and first insights into associations with epigenetic and other omics (e.g., metabolomics) profiles. We allowed for a broad phenotype definition including studies on "aggression," "aggressive behavior," or "aggression-related traits," "antisocial behavior," "conduct disorder," and "oppositional defiant disorder." Heritability estimates based on family and twin studies in children and adults of this broadly defined phenotype of aggression are around 50%, with relatively small fluctuations around this estimate. Next, we review the genome-wide association studies (GWAS) which search for associations with alleles and also allow for gene-based tests and epigenome-wide association studies (EWAS) which seek to identify associations with differently methylated regions across the genome. Both GWAS and EWAS allow for construction of Polygenic and DNA methylation scores at an individual level. Currently, these predict a small percentage of variance in aggression. We expect that increases in sample size will lead to additional discoveries in GWAS and EWAS, and that multiomics approaches will lead to a more comprehensive understanding of the molecular underpinnings of aggression.


Subject(s)
Epigenesis, Genetic , Genome-Wide Association Study , Adult , Child , Humans , Epigenesis, Genetic/genetics , Aggression , DNA Methylation/genetics , Genomics
12.
medRxiv ; 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37425750

ABSTRACT

Background: The influence of genetics and environment on the association of the plasma proteome with body mass index (BMI) and changes in BMI remain underexplored, and the links to other omics in these associations remain to be investigated. We characterized protein-BMI trajectory associations in adolescents and adults and how these connect to other omics layers. Methods: Our study included two cohorts of longitudinally followed twins: FinnTwin12 (N=651) and the Netherlands Twin Register (NTR) (N=665). Follow-up comprised four BMI measurements over approximately 6 (NTR: 23-27 years old) to 10 years (FinnTwin12: 12-22 years old), with omics data collected at the last BMI measurement. BMI changes were calculated using latent growth curve models. Mixed-effects models were used to quantify the associations between the abundance of 439 plasma proteins with BMI at blood sampling and changes in BMI. The sources of genetic and environmental variation underlying the protein abundances were quantified using twin models, as were the associations of proteins with BMI and BMI changes. In NTR, we investigated the association of gene expression of genes encoding proteins identified in FinnTwin12 with BMI and changes in BMI. We linked identified proteins and their coding genes to plasma metabolites and polygenic risk scores (PRS) using mixed-effect models and correlation networks. Results: We identified 66 and 14 proteins associated with BMI at blood sampling and changes in BMI, respectively. The average heritability of these proteins was 35%. Of the 66 BMI-protein associations, 43 and 12 showed genetic and environmental correlations, respectively, including 8 proteins showing both. Similarly, we observed 6 and 4 genetic and environmental correlations between changes in BMI and protein abundance, respectively. S100A8 gene expression was associated with BMI at blood sampling, and the PRG4 and CFI genes were associated with BMI changes. Proteins showed strong connections with many metabolites and PRSs, but we observed no multi-omics connections among gene expression and other omics layers. Conclusions: Associations between the proteome and BMI trajectories are characterized by shared genetic, environmental, and metabolic etiologies. We observed few gene-protein pairs associated with BMI or changes in BMI at the proteome and transcriptome levels.

13.
Sci Rep ; 12(1): 5606, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379837

ABSTRACT

Handedness has low heritability and epigenetic mechanisms have been proposed as an etiological mechanism. To examine this hypothesis, we performed an epigenome-wide association study of left-handedness. In a meta-analysis of 3914 adults of whole-blood DNA methylation, we observed that CpG sites located in proximity of handedness-associated genetic variants were more strongly associated with left-handedness than other CpG sites (P = 0.04), but did not identify any differentially methylated positions. In longitudinal analyses of DNA methylation in peripheral blood and buccal cells from children (N = 1737), we observed moderately stable associations across age (correlation range [0.355-0.578]), but inconsistent across tissues (correlation range [- 0.384 to 0.318]). We conclude that DNA methylation in peripheral tissues captures little of the variance in handedness. Future investigations should consider other more targeted sources of tissue, such as the brain.


Subject(s)
DNA Methylation , Mouth Mucosa , Adult , Child , CpG Islands , Functional Laterality/genetics , Genome-Wide Association Study , Humans
14.
Metabolites ; 12(6)2022 May 24.
Article in English | MEDLINE | ID: mdl-35736407

ABSTRACT

Variation in metabolite levels reflects individual differences in genetic and environmental factors. Here, we investigated the role of these factors in urinary metabolomics data in children. We examined the effects of sex and age on 86 metabolites, as measured on three metabolomics platforms that target amines, organic acids, and steroid hormones. Next, we estimated their heritability in a twin cohort of 1300 twins (age range: 5.7-12.9 years). We observed associations between age and 50 metabolites and between sex and 21 metabolites. The monozygotic (MZ) and dizygotic (DZ) correlations for the urinary metabolites indicated a role for non-additive genetic factors for 50 amines, 13 organic acids, and 6 steroids. The average broad-sense heritability for these amines, organic acids, and steroids was 0.49 (range: 0.25-0.64), 0.50 (range: 0.33-0.62), and 0.64 (range: 0.43-0.81), respectively. For 6 amines, 7 organic acids, and 4 steroids the twin correlations indicated a role for shared environmental factors and the average narrow-sense heritability was 0.50 (range: 0.37-0.68), 0.50 (range; 0.23-0.61), and 0.47 (range: 0.32-0.70) for these amines, organic acids, and steroids. We conclude that urinary metabolites in children have substantial heritability, with similar estimates for amines and organic acids, and higher estimates for steroid hormones.

15.
Nat Commun ; 13(1): 702, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35132056

ABSTRACT

Acne vulgaris is a highly heritable skin disorder that primarily impacts facial skin. Severely inflamed lesions may leave permanent scars that have been associated with long-term psychosocial consequences. Here, we perform a GWAS meta-analysis comprising 20,165 individuals with acne from nine independent European ancestry cohorts. We identify 29 novel genome-wide significant loci and replicate 14 of the 17 previously identified risk loci, bringing the total number of reported acne risk loci to 46. Using fine-mapping and eQTL colocalisation approaches, we identify putative causal genes at several acne susceptibility loci that have previously been implicated in Mendelian hair and skin disorders, including pustular psoriasis. We identify shared genetic aetiology between acne, hormone levels, hormone-sensitive cancers and psychiatric traits. Finally, we show that a polygenic risk score calculated from our results explains up to 5.6% of the variance in acne liability in an independent cohort.


Subject(s)
Acne Vulgaris/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Multifactorial Inheritance , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Risk
16.
J Am Acad Child Adolesc Psychiatry ; 61(7): 934-945, 2022 07.
Article in English | MEDLINE | ID: mdl-35378236

ABSTRACT

OBJECTIVE: To investigate the genetic architecture of internalizing symptoms in childhood and adolescence. METHOD: In 22 cohorts, multiple univariate genome-wide association studies (GWASs) were performed using repeated assessments of internalizing symptoms, in a total of 64,561 children and adolescents between 3 and 18 years of age. Results were aggregated in meta-analyses that accounted for sample overlap, first using all available data, and then using subsets of measurements grouped by rater, age, and instrument. RESULTS: The meta-analysis of overall internalizing symptoms (INToverall) detected no genome-wide significant hits and showed low single nucleotide polymorphism (SNP) heritability (1.66%, 95% CI = 0.84-2.48%, neffective = 132,260). Stratified analyses indicated rater-based heterogeneity in genetic effects, with self-reported internalizing symptoms showing the highest heritability (5.63%, 95% CI = 3.08%-8.18%). The contribution of additive genetic effects on internalizing symptoms appeared to be stable over age, with overlapping estimates of SNP heritability from early childhood to adolescence. Genetic correlations were observed with adult anxiety, depression, and the well-being spectrum (|rg| > 0.70), as well as with insomnia, loneliness, attention-deficit/hyperactivity disorder, autism, and childhood aggression (range |rg| = 0.42-0.60), whereas there were no robust associations with schizophrenia, bipolar disorder, obsessive-compulsive disorder, or anorexia nervosa. CONCLUSION: Genetic correlations indicate that childhood and adolescent internalizing symptoms share substantial genetic vulnerabilities with adult internalizing disorders and other childhood psychiatric traits, which could partially explain both the persistence of internalizing symptoms over time and the high comorbidity among childhood psychiatric traits. Reducing phenotypic heterogeneity in childhood samples will be key in paving the way to future GWAS success.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autistic Disorder , Genome-Wide Association Study , Sleep Initiation and Maintenance Disorders , Adolescent , Adult , Aggression , Anxiety/genetics , Attention Deficit Disorder with Hyperactivity/genetics , Autistic Disorder/genetics , Bipolar Disorder , Child , Child, Preschool , Depression/genetics , Humans , Loneliness , Polymorphism, Single Nucleotide , Schizophrenia , Sleep Initiation and Maintenance Disorders/genetics
17.
Front Psychiatry ; 12: 688464, 2021.
Article in English | MEDLINE | ID: mdl-34393852

ABSTRACT

We examined the performance of methylation scores (MS) and polygenic scores (PGS) for birth weight, BMI, prenatal maternal smoking exposure, and smoking status to assess the extent to which MS could predict these traits and exposures over and above the PGS in a multi-omics prediction model. MS may be seen as the epigenetic equivalent of PGS, but because of their dynamic nature and sensitivity of non-genetic exposures may add to complex trait prediction independently of PGS. MS and PGS were calculated based on genotype data and DNA-methylation data in blood samples from adults (Illumina 450 K; N = 2,431; mean age 35.6) and in buccal samples from children (Illumina EPIC; N = 1,128; mean age 9.6) from the Netherlands Twin Register. Weights to construct the scores were obtained from results of large epigenome-wide association studies (EWASs) based on whole blood or cord blood methylation data and genome-wide association studies (GWASs). In adults, MSs in blood predicted independently from PGSs, and outperformed PGSs for BMI, prenatal maternal smoking, and smoking status, but not for birth weight. The largest amount of variance explained by the multi-omics prediction model was for current vs. never smoking (54.6%) of which 54.4% was captured by the MS. The two predictors captured 16% of former vs. never smoking initiation variance (MS:15.5%, PGS: 0.5%), 17.7% of prenatal maternal smoking variance (MS:16.9%, PGS: 0.8%), 11.9% of BMI variance (MS: 6.4%, PGS 5.5%), and 1.9% of birth weight variance (MS: 0.4%, PGS: 1.5%). In children, MSs in buccal samples did not show independent predictive value. The largest amount of variance explained by the two predictors was for prenatal maternal smoking (2.6%), where the MSs contributed 1.5%. These results demonstrate that blood DNA MS in adults explain substantial variance in current smoking, large variance in former smoking, prenatal smoking, and BMI, but not in birth weight. Buccal cell DNA methylation scores have lower predictive value, which could be due to different tissues in the EWAS discovery studies and target sample, as well as to different ages. This study illustrates the value of combining polygenic scores with information from methylation data for complex traits and exposure prediction.

18.
Nat Commun ; 12(1): 5618, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34584077

ABSTRACT

Monozygotic (MZ) twins and higher-order multiples arise when a zygote splits during pre-implantation stages of development. The mechanisms underpinning this event have remained a mystery. Because MZ twinning rarely runs in families, the leading hypothesis is that it occurs at random. Here, we show that MZ twinning is strongly associated with a stable DNA methylation signature in adult somatic tissues. This signature spans regions near telomeres and centromeres, Polycomb-repressed regions and heterochromatin, genes involved in cell-adhesion, WNT signaling, cell fate, and putative human metastable epialleles. Our study also demonstrates a never-anticipated corollary: because identical twins keep a lifelong molecular signature, we can retrospectively diagnose if a person was conceived as monozygotic twin.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Epigenomics/methods , Quantitative Trait Loci/genetics , Twinning, Monozygotic/genetics , Twins, Monozygotic/genetics , Adult , Finland , Genotype , Humans , Middle Aged , Netherlands , Polymorphism, Single Nucleotide , Registries/statistics & numerical data , Retrospective Studies , United Kingdom , Young Adult
20.
Nat Commun ; 11(1): 39, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31911595

ABSTRACT

Metabolomics examines the small molecules involved in cellular metabolism. Approximately 50% of total phenotypic differences in metabolite levels is due to genetic variance, but heritability estimates differ across metabolite classes. We perform a review of all genome-wide association and (exome-) sequencing studies published between November 2008 and October 2018, and identify >800 class-specific metabolite loci associated with metabolite levels. In a twin-family cohort (N = 5117), these metabolite loci are leveraged to simultaneously estimate total heritability (h2total), and the proportion of heritability captured by known metabolite loci (h2Metabolite-hits) for 309 lipids and 52 organic acids. Our study reveals significant differences in h2Metabolite-hits among different classes of lipids and organic acids. Furthermore, phosphatidylcholines with a high degree of unsaturation have higher h2Metabolite-hits estimates than phosphatidylcholines with low degrees of unsaturation. This study highlights the importance of common genetic variants for metabolite levels, and elucidates the genetic architecture of metabolite classes.


Subject(s)
Blood/metabolism , Genome-Wide Association Study , Blood Chemical Analysis , Cohort Studies , Humans , Metabolomics , Quantitative Trait Loci , Twins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL