Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Methods Mol Biol ; 2681: 343-359, 2023.
Article in English | MEDLINE | ID: mdl-37405657

ABSTRACT

Integration of a gene of interest (GOI) into the genome of mammalian cells is the first step of cell line development campaigns for the production of biotherapeutics. Besides random integration methods, targeted gene integration approaches have emerged as promising tools over the last few years. In addition to reducing heterogeneity within a pool of recombinant transfectants, this process can also facilitate shorter timelines of the current cell line development process. Herein, we describe protocols for generating host cell lines carrying matrix attachment region (MAR)-rich landing pads (LPs), including BxB1 recombination sites. These LP-containing cell lines allow for site-specific and simultaneous integration of multiple GOIs. The resulting transgene-expressing stable recombinant clones can be used for the production of mono- or multispecific antibodies.


Subject(s)
Matrix Attachment Regions , Animals , Clone Cells/metabolism , Recombinant Proteins/metabolism , Transgenes
2.
Biotechnol Prog ; 38(4): e3254, 2022 07.
Article in English | MEDLINE | ID: mdl-35396920

ABSTRACT

In recent years, targeted gene integration (TI) has been introduced as a strategy for the generation of recombinant mammalian cell lines for the production of biotherapeutics. Besides reducing the immense heterogeneity within a pool of recombinant transfectants, TI also aims at shortening the duration of the current cell line development process. Here we describe the generation of a host cell line carrying Matrix-Attachment Region (MAR)-rich landing pads (LPs), which allow for the simultaneous and site-specific integration of multiple genes of interest (GOIs). We show that several copies of each chicken lysozyme 5'MAR-based LP containing either BxB1 wild type or mutated recombination sites, integrated at one random chromosomal locus of the host cell genome. We further demonstrate that these LP-containing host cell lines can be used for the site-specific integration of several GOIs and thus, generation of transgene-expressing stable recombinant clones. Transgene expression was shown by site-specific integration of heavy and light chain genes coding for a monospecific antibody (msAb) as well as for a bi-specific antibody (bsAb). The genetic stability of the herein described LP-based recombinant clones expressing msAb or bsAb was demonstrated by cultivating the recombinant clones and measuring antibody titers over 85 generations. We conclude that the host cell containing multiple copies of MAR-rich landing pads can be successfully used for stable expression of one or several GOIs.


Subject(s)
Genome , Animals , CHO Cells , Cricetinae , Cricetulus , Recombinant Proteins/genetics , Transgenes
3.
Chem Sci ; 13(14): 3965-3976, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35440989

ABSTRACT

Antibodies are an attractive therapeutic modality for cancer treatment as they allow the increase of the treatment response rate and avoid the severe side effects of chemotherapy. Notwithstanding the strong benefit of antibodies, the efficacy of anti-cancer antibodies can dramatically vary among patients and ultimately result in no response to the treatment. Here, we have developed a novel means to regioselectively label the Fc domain of any therapeutic antibody with a radionuclide chelator in a single step chemistry, with the aim to study by SPECT/CT imaging if the radiolabeled antibody is capable of targeting cancer cells in vivo. A Fc-III peptide was used as bait to bring a carbonate electrophilic site linked to a metal chelator and to a carboxyphenyl leaving group in close proximity with an antibody Fc nucleophile amino acid (K317), thereby triggering the covalent linkage of the chelator to the antibody lysine, with the concomitant release of the carboxyphenyl Fc-III ligand. Using CHX-A''-DTPA, we radiolabeled trastuzumab with indium-111 and showed in biodistribution and imaging experiments that the antibody accumulated successfully in the SK-OV-3 xenograft tumour implanted in mice. We found that our methodology leads to homogeneous conjugation of CHX-A''-DTPA to the antibody, and confirmed that the Fc domain can be selectively labeled at K317, with a minor level of unspecific labeling on the Fab domain. The present method can be developed as a clinical diagnostic tool to predict the success of the therapy. Furthermore, our Fc-III one step chemistry concept paves the way to a broad array of other applications in antibody bioengineering.

4.
Methods Mol Biol ; 2095: 105-123, 2020.
Article in English | MEDLINE | ID: mdl-31858465

ABSTRACT

Increasing the cultivation volume from small to large scale can be a rather complex and challenging process when the method of aeration and mixing is different between scales. Orbitally shaken bioreactors (OSBs) utilize the same hydrodynamic principles that define the success of smaller-scale cultures, which are developed on an orbitally shaken platform, and can simplify scale-up. Here we describe the basic working principles of scale-up in terms of the volumetric oxygen transfer coefficient (kLa) and mixing time and how to define these parameters experimentally. The scale-up process from an Erlenmeyer flask shaken on an orbital platform to an orbitally shaken single-use bioreactor (SB10-X, 12 L) is described in terms of both fed-batch and perfusion-based processes. The fed-batch process utilizes a recombinant variant of the mammalian cell line, Chinese hamster ovary (CHO), to express a biosimilar of a therapeutic monoclonal antibody. The perfusion-based process utilizes either an alternating tangential flow filtration (ATF) or a tangential flow filtration (TFF) system for cell retention to cultivate an avian cell line, AGE1.CR.pIX, for the propagation of influenza A virus, H1N1, in high cell density. Based on two example cell cultivations, processes outline the advantages that come with using an orbitally shaken bioreactor for scaling-up a process. The described methods are also applicable to other suspension cell lines.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Batch Cell Culture Techniques/instrumentation , Batch Cell Culture Techniques/methods , Bioreactors , Influenza A Virus, H1N1 Subtype/isolation & purification , Perfusion/methods , Virus Cultivation/methods , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/immunology , Birds/immunology , Birds/metabolism , CHO Cells , Cell Count , Cells, Cultured , Cricetulus , Glycosylation , Influenza A Virus, H1N1 Subtype/immunology , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Vaccines/biosynthesis , Vaccines/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL