Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Cell Dev Biol ; 39: 277-305, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37540844

ABSTRACT

Cells must tightly regulate their gene expression programs and yet rapidly respond to acute biochemical and biophysical cues within their environment. This information is transmitted to the nucleus through various signaling cascades, culminating in the activation or repression of target genes. Transcription factors (TFs) are key mediators of these signals, binding to specific regulatory elements within chromatin. While live-cell imaging has conclusively proven that TF-chromatin interactions are highly dynamic, how such transient interactions can have long-term impacts on developmental trajectories and disease progression is still largely unclear. In this review, we summarize our current understanding of the dynamic nature of TF functions, starting with a historical overview of early live-cell experiments. We highlight key factors that govern TF dynamics and how TF dynamics, in turn, affect downstream transcriptional bursting. Finally, we conclude with open challenges and emerging technologies that will further our understanding of transcriptional regulation.


Subject(s)
Gene Expression Regulation , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Chromatin/genetics , Regulatory Sequences, Nucleic Acid
2.
Immunity ; 55(8): 1402-1413.e4, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35882235

ABSTRACT

The differentiation of innate lymphoid cells (ILCs) from hematopoietic stem cells needs to go through several multipotent progenitor stages. However, it remains unclear whether the fates of multipotent progenitors are predefined by epigenetic states. Here, we report the identification of distinct accessible chromatin regions in all lymphoid progenitors (ALPs), EILPs, and ILC precursors (ILCPs). Single-cell MNase-seq analyses revealed that EILPs contained distinct subpopulations epigenetically primed toward either dendritic cell lineages or ILC lineages. We found that TCF-1 and GATA3 co-bound to the lineage-defining sites for ILCs (LDS-Is), whereas PU.1 binding was enriched in the LDSs for alternative dendritic cells (LDS-As). TCF-1 and GATA3 were indispensable for the epigenetic priming of LDSs at the EILP stage. Our results suggest that the multipotency of progenitor cells is defined by the existence of a heterogeneous population of cells epigenetically primed for distinct downstream lineages, which are regulated by key transcription factors.


Subject(s)
Immunity, Innate , Lymphocytes , Cell Differentiation , Cell Lineage , Epigenesis, Genetic , Hematopoietic Stem Cells
3.
Cell ; 165(3): 593-605, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27062924

ABSTRACT

The estrogen receptor (ER), glucocorticoid receptor (GR), and forkhead box protein 1 (FoxA1) are significant factors in breast cancer progression. FoxA1 has been implicated in establishing ER-binding patterns though its unique ability to serve as a pioneer factor. However, the molecular interplay between ER, GR, and FoxA1 requires further investigation. Here we show that ER and GR both have the ability to alter the genomic distribution of the FoxA1 pioneer factor. Single-molecule tracking experiments in live cells reveal a highly dynamic interaction of FoxA1 with chromatin in vivo. Furthermore, the FoxA1 factor is not associated with detectable footprints at its binding sites throughout the genome. These findings support a model wherein interactions between transcription factors and pioneer factors are highly dynamic. Moreover, at a subset of genomic sites, the role of pioneer can be reversed, with the steroid receptors serving to enhance binding of FoxA1.


Subject(s)
Hepatocyte Nuclear Factor 3-alpha/metabolism , Chromatin/metabolism , Deoxyribonucleases/metabolism , Humans , MCF-7 Cells , Receptors, Estrogen/genetics , Receptors, Glucocorticoid/genetics , Transcription Factors/metabolism
4.
Mol Cell ; 82(18): 3398-3411.e11, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35863348

ABSTRACT

Regulatory elements activate promoters by recruiting transcription factors (TFs) to specific motifs. Notably, TF-DNA interactions often depend on cooperativity with colocalized partners, suggesting an underlying cis-regulatory syntax. To explore TF cooperativity in mammals, we analyze ∼500 mouse and human primary cells by combining an atlas of TF motifs, footprints, ChIP-seq, transcriptomes, and accessibility. We uncover two TF groups that colocalize with most expressed factors, forming stripes in hierarchical clustering maps. The first group includes lineage-determining factors that occupy DNA elements broadly, consistent with their key role in tissue-specific transcription. The second one, dubbed universal stripe factors (USFs), comprises ∼30 SP, KLF, EGR, and ZBTB family members that recognize overlapping GC-rich sequences in all tissues analyzed. Knockouts and single-molecule tracking reveal that USFs impart accessibility to colocalized partners and increase their residence time. Mammalian cells have thus evolved a TF superfamily with overlapping DNA binding that facilitate chromatin accessibility.


Subject(s)
Chromatin , Transcription Factors , Animals , Binding Sites , Chromatin/genetics , DNA/genetics , Humans , Mammals/genetics , Mammals/metabolism , Mice , Mice, Knockout , Protein Binding , Transcription Factors/metabolism
5.
Mol Cell ; 81(7): 1484-1498.e6, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33561389

ABSTRACT

Transcription factors (TFs) regulate gene expression by binding to specific consensus motifs within the local chromatin context. The mechanisms by which TFs navigate the nuclear environment as they search for binding sites remain unclear. Here, we used single-molecule tracking and machine-learning-based classification to directly measure the nuclear mobility of the glucocorticoid receptor (GR) in live cells. We revealed two distinct and dynamic low-mobility populations. One accounts for specific binding to chromatin, while the other represents a confinement state that requires an intrinsically disordered region (IDR), implicated in liquid-liquid condensate subdomains. Further analysis showed that the dwell times of both subpopulations follow a power-law distribution, consistent with a broad distribution of affinities on the GR cistrome and interactome. Together, our data link IDRs with a confinement state that is functionally distinct from specific chromatin binding and modulates the transcriptional output by increasing the local concentration of TFs at specific sites.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Receptors, Glucocorticoid/chemistry , Transcription Factors/chemistry , Animals , Female , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Mice , Rats , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Cell ; 155(7): 1507-20, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24360274

ABSTRACT

A key finding of the ENCODE project is that the enhancer landscape of mammalian cells undergoes marked alterations during ontogeny. However, the nature and extent of these changes are unclear. As part of the NIH Mouse Regulome Project, we here combined DNaseI hypersensitivity, ChIP-seq, and ChIA-PET technologies to map the promoter-enhancer interactomes of pluripotent ES cells and differentiated B lymphocytes. We confirm that enhancer usage varies widely across tissues. Unexpectedly, we find that this feature extends to broadly transcribed genes, including Myc and Pim1 cell-cycle regulators, which associate with an entirely different set of enhancers in ES and B cells. By means of high-resolution CpG methylomes, genome editing, and digital footprinting, we show that these enhancers recruit lineage-determining factors. Furthermore, we demonstrate that the turning on and off of enhancers during development correlates with promoter activity. We propose that organisms rely on a dynamic enhancer landscape to control basic cellular functions in a tissue-specific manner.


Subject(s)
B-Lymphocytes/metabolism , Embryonic Stem Cells/metabolism , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Promoter Regions, Genetic , Regulon , Animals , Cell Lineage , Cells, Cultured , CpG Islands , DNA Methylation , Genetic Techniques , Mice , Organ Specificity , RNA, Long Noncoding/genetics , Transcription Factors/metabolism , Transcription, Genetic
7.
Mol Cell ; 75(6): 1161-1177.e11, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31421980

ABSTRACT

Genes are transcribed in a discontinuous pattern referred to as RNA bursting, but the mechanisms regulating this process are unclear. Although many physiological signals, including glucocorticoid hormones, are pulsatile, the effects of transient stimulation on bursting are unknown. Here we characterize RNA synthesis from single-copy glucocorticoid receptor (GR)-regulated transcription sites (TSs) under pulsed (ultradian) and constant hormone stimulation. In contrast to constant stimulation, pulsed stimulation induces restricted bursting centered around the hormonal pulse. Moreover, we demonstrate that transcription factor (TF) nuclear mobility determines burst duration, whereas its bound fraction determines burst frequency. Using 3D tracking of TSs, we directly correlate TF binding and RNA synthesis at a specific promoter. Finally, we uncover a striking co-bursting pattern between TSs located at proximal and distal positions in the nucleus. Together, our data reveal a dynamic interplay between TF mobility and RNA bursting that is responsive to stimuli strength, type, modality, and duration.


Subject(s)
Glucocorticoids/pharmacology , Promoter Regions, Genetic , RNA/biosynthesis , Receptors, Glucocorticoid/metabolism , Transcription Initiation Site , Transcription, Genetic/drug effects , Animals , Mice , RNA/genetics
8.
Immunity ; 47(2): 298-309.e5, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28801231

ABSTRACT

Despite the widespread use of glucocorticoids (GCs), their anti-inflammatory effects are not understood mechanistically. Numerous investigations have examined the effects of glucocorticoid receptor (GR) activation prior to inflammatory challenges. However, clinical situations are emulated by a GC intervention initiated in the midst of rampant inflammatory responses. To characterize the effects of a late GC treatment, we profiled macrophage transcriptional and chromatinscapes with Dexamethasone (Dex) treatment before or after stimulation by lipopolysaccharide (LPS). The late activation of GR had a similar gene-expression profile as from GR pre-activation, while ameliorating the disruption of metabolic genes. Chromatin occupancy of GR was not predictive of Dex-regulated gene expression, contradicting the "trans-repression by tethering" model. Rather, GR activation resulted in genome-wide blockade of NF-κB interaction with chromatin and directly induced inhibitors of NF-κB and AP-1. Our investigation using GC treatments with clinically relevant timing highlights mechanisms underlying GR actions for modulating the "inflamed epigenome."


Subject(s)
Anti-Inflammatory Agents/pharmacology , Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Inflammation/drug therapy , Macrophages/drug effects , Macrophages/immunology , Receptors, Glucocorticoid/metabolism , Animals , Anti-Inflammatory Agents/therapeutic use , Cells, Cultured , Chromatin/metabolism , Chromatin Assembly and Disassembly , Dexamethasone/therapeutic use , Glucocorticoids/therapeutic use , Humans , Inflammation/immunology , Lipopolysaccharides/immunology , Macrophage Activation , Mice , Mice, Inbred C57BL , NF-kappa B/genetics , NF-kappa B/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Transcriptome
9.
Cell ; 146(4): 544-54, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21835447

ABSTRACT

The glucocorticoid receptor (GR), like other eukaryotic transcription factors, regulates gene expression by interacting with chromatinized DNA response elements. Photobleaching experiments in living cells indicate that receptors transiently interact with DNA on the time scale of seconds and predict that the response elements may be sparsely occupied on average. Here, we show that the binding of one receptor at the glucocorticoid response element (GRE) does not reduce the steady-state binding of another receptor variant to the same GRE. Mathematical simulations reproduce this noncompetitive state using short GR/GRE residency times and relatively long times between DNA binding events. At many genomic sites where GR binding causes increased chromatin accessibility, concurrent steady-state binding levels for the variant receptor are actually increased, a phenomenon termed assisted loading. Temporally sparse transcription factor-DNA interactions induce local chromatin reorganization, resulting in transient access for binding of secondary regulatory factors.


Subject(s)
Chromatin Assembly and Disassembly , Receptors, Glucocorticoid/metabolism , Response Elements , Adenosine Triphosphate/metabolism , Animals , Cell Line, Tumor , Mammary Tumor Virus, Mouse , Mice , Models, Biological , Monte Carlo Method , Nucleosomes/metabolism , Receptors, Estrogen/metabolism , Regulatory Sequences, Nucleic Acid , Transcription Factors/metabolism
10.
Mol Cell ; 67(4): 566-578.e10, 2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28803781

ABSTRACT

50 years ago, Vincent Allfrey and colleagues discovered that lymphocyte activation triggers massive acetylation of chromatin. However, the molecular mechanisms driving epigenetic accessibility are still unknown. We here show that stimulated lymphocytes decondense chromatin by three differentially regulated steps. First, chromatin is repositioned away from the nuclear periphery in response to global acetylation. Second, histone nanodomain clusters decompact into mononucleosome fibers through a mechanism that requires Myc and continual energy input. Single-molecule imaging shows that this step lowers transcription factor residence time and non-specific collisions during sampling for DNA targets. Third, chromatin interactions shift from long range to predominantly short range, and CTCF-mediated loops and contact domains double in numbers. This architectural change facilitates cognate promoter-enhancer contacts and also requires Myc and continual ATP production. Our results thus define the nature and transcriptional impact of chromatin decondensation and reveal an unexpected role for Myc in the establishment of nuclear topology in mammalian cells.


Subject(s)
B-Lymphocytes/metabolism , Cell Cycle , Cell Nucleus/metabolism , Chromatin Assembly and Disassembly , Chromatin/metabolism , Histones/metabolism , Lymphocyte Activation , Proto-Oncogene Proteins c-myc/metabolism , Acetyl Coenzyme A/metabolism , Acetylation , Adenosine Triphosphate/metabolism , Animals , B-Lymphocytes/immunology , Cell Line , Chromatin/chemistry , Chromatin/genetics , DNA Methylation , Epigenesis, Genetic , Genotype , Histones/chemistry , Immunity, Humoral , Methylation , Mice, Inbred C57BL , Mice, Knockout , Nucleic Acid Conformation , Phenotype , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-myc/chemistry , Proto-Oncogene Proteins c-myc/genetics , Single Molecule Imaging , Structure-Activity Relationship , Time Factors , Transcription, Genetic
11.
Nucleic Acids Res ; 50(22): 13063-13082, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36464162

ABSTRACT

The glucocorticoid receptor (GR) is a ubiquitously expressed transcription factor that controls metabolic and homeostatic processes essential for life. Although numerous crystal structures of the GR ligand-binding domain (GR-LBD) have been reported, the functional oligomeric state of the full-length receptor, which is essential for its transcriptional activity, remains disputed. Here we present five new crystal structures of agonist-bound GR-LBD, along with a thorough analysis of previous structural work. We identify four distinct homodimerization interfaces on the GR-LBD surface, which can associate into 20 topologically different homodimers. Biologically relevant homodimers were identified by studying a battery of GR point mutants including crosslinking assays in solution, quantitative fluorescence microscopy in living cells, and transcriptomic analyses. Our results highlight the relevance of non-canonical dimerization modes for GR, especially of contacts made by loop L1-3 residues such as Tyr545. Our work illustrates the unique flexibility of GR's LBD and suggests different dimeric conformations within cells. In addition, we unveil pathophysiologically relevant quaternary assemblies of the receptor with important implications for glucocorticoid action and drug design.


Subject(s)
Glucocorticoids , Receptors, Glucocorticoid , Receptors, Glucocorticoid/metabolism , Ligands , Protein Binding , Dimerization
12.
PLoS Genet ; 17(8): e1009737, 2021 08.
Article in English | MEDLINE | ID: mdl-34375333

ABSTRACT

Ultradian glucocorticoid rhythms are highly conserved across mammalian species, however, their functional significance is not yet fully understood. Here we demonstrate that pulsatile corticosterone replacement in adrenalectomised rats induces a dynamic pattern of glucocorticoid receptor (GR) binding at ~3,000 genomic sites in liver at the pulse peak, subsequently not found during the pulse nadir. In contrast, constant corticosterone replacement induced prolonged binding at the majority of these sites. Additionally, each pattern further induced markedly different transcriptional responses. During pulsatile treatment, intragenic occupancy by active RNA polymerase II exhibited pulsatile dynamics with transient changes in enrichment, either decreased or increased depending on the gene, which mostly returned to baseline during the inter-pulse interval. In contrast, constant corticosterone exposure induced prolonged effects on RNA polymerase II occupancy at the majority of gene targets, thus acting as a sustained regulatory signal for both transactivation and repression of glucocorticoid target genes. The nett effect of these differences were consequently seen in the liver transcriptome as RNA-seq analysis indicated that despite the same overall amount of corticosterone infused, twice the number of transcripts were regulated by constant corticosterone infusion, when compared to pulsatile. Target genes that were found to be differentially regulated in a pattern-dependent manner were enriched in functional pathways including carbohydrate, cholesterol, glucose and fat metabolism as well as inflammation, suggesting a functional role for dysregulated glucocorticoid rhythms in the development of metabolic dysfunction.


Subject(s)
Corticosterone/pharmacology , Liver/pathology , Receptors, Glucocorticoid/metabolism , Animals , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Glucocorticoids/metabolism , Liver/metabolism , Male , Periodicity , Protein Transport/genetics , RNA Polymerase II/genetics , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Receptors, Glucocorticoid/physiology , Transcriptional Activation/genetics , Transcriptome/genetics
13.
Nat Chem Biol ; 17(3): 307-316, 2021 03.
Article in English | MEDLINE | ID: mdl-33510451

ABSTRACT

Glucocorticoids display remarkable anti-inflammatory activity, but their use is limited by on-target adverse effects including insulin resistance and skeletal muscle atrophy. We used a chemical systems biology approach, ligand class analysis, to examine ligands designed to modulate glucocorticoid receptor activity through distinct structural mechanisms. These ligands displayed diverse activity profiles, providing the variance required to identify target genes and coregulator interactions that were highly predictive of their effects on myocyte glucose disposal and protein balance. Their anti-inflammatory effects were linked to glucose disposal but not muscle atrophy. This approach also predicted selective modulation in vivo, identifying compounds that were muscle-sparing or anabolic for protein balance and mitochondrial potential. Ligand class analysis defined the mechanistic links between the ligand-receptor interface and ligand-driven physiological outcomes, a general approach that can be applied to any ligand-regulated allosteric signaling system.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Glucose Transporter Type 4/genetics , Muscular Atrophy/drug therapy , Receptors, Glucocorticoid/chemistry , Signal Transduction/drug effects , A549 Cells , Allosteric Regulation , Animals , Anti-Inflammatory Agents/chemical synthesis , Cell Line, Transformed , Gene Expression Regulation , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Humans , Lipopolysaccharides/administration & dosage , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscular Atrophy/chemically induced , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Myoblasts/drug effects , Myoblasts/metabolism , Rats , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Structure-Activity Relationship
14.
Nucleic Acids Res ; 49(12): 6605-6620, 2021 07 09.
Article in English | MEDLINE | ID: mdl-33592625

ABSTRACT

Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs-one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template.


Subject(s)
Transcription Factors/metabolism , Animals , Cell Line, Tumor , Kinetics , Mice , Models, Biological , Photobleaching , Protein Binding , Receptors, Glucocorticoid/metabolism , Single Molecule Imaging
15.
Genome Res ; 29(8): 1223-1234, 2019 08.
Article in English | MEDLINE | ID: mdl-31337711

ABSTRACT

Most transcription factors, including nuclear receptors, are widely modeled as binding regulatory elements as monomers, homodimers, or heterodimers. Recent findings in live cells show that the glucocorticoid receptor NR3C1 (also known as GR) forms tetramers on enhancers, owing to an allosteric alteration induced by DNA binding, and suggest that higher oligomerization states are important for the gene regulatory responses of GR. By using a variant (GRtetra) that mimics this allosteric transition, we performed genome-wide studies using a GR knockout cell line with reintroduced wild-type GR or reintroduced GRtetra. GRtetra acts as a super receptor by binding to response elements not accessible to the wild-type receptor and both induces and represses more genes than GRwt. These results argue that DNA binding induces a structural transition to the tetrameric state, forming a transient higher-order structure that drives both the activating and repressive actions of glucocorticoids.


Subject(s)
Chromatin/ultrastructure , Epithelial Cells/drug effects , Genome , Glucocorticoids/pharmacology , RNA, Messenger/genetics , Receptors, Glucocorticoid/chemistry , Animals , Base Sequence , CRISPR-Cas Systems , Cell Line, Tumor , Chromatin/chemistry , DNA/genetics , DNA/metabolism , Enhancer Elements, Genetic , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Gene Editing/methods , Glucocorticoids/metabolism , High-Throughput Nucleotide Sequencing , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mice , Protein Binding , Protein Structure, Quaternary , RNA, Messenger/metabolism , Rats , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Transcriptional Activation
16.
FASEB J ; 35(12): e21999, 2021 12.
Article in English | MEDLINE | ID: mdl-34748223

ABSTRACT

The Creb-Regulated Transcriptional Coactivator (Crtc) family of transcriptional coregulators drive Creb1-mediated transcription effects on metabolism in many tissues, but the in vivo effects of Crtc2/Creb1 transcription on skeletal muscle metabolism are not known. Skeletal muscle-specific overexpression of Crtc2 (Crtc2 mice) induced greater mitochondrial activity, metabolic flux capacity for both carbohydrates and fats, improved glucose tolerance and insulin sensitivity, and increased oxidative capacity, supported by upregulation of key metabolic genes. Crtc2 overexpression led to greater weight loss during alternate day fasting (ADF), selective loss of fat rather than lean mass, maintenance of higher energy expenditure during the fast and reduced binge-eating during the feeding period. ADF downregulated most of the mitochondrial electron transport genes, and other regulators of mitochondrial function, that were substantially reversed by Crtc2-driven transcription. Glucocorticoids acted with AMPK to drive atrophy and mitophagy, which was reversed by Crtc2/Creb1 signaling. Crtc2/Creb1-mediated signaling coordinates metabolic adaptations in skeletal muscle that explain how Crtc2/Creb1 regulates metabolism and weight loss.


Subject(s)
Cyclic AMP Response Element-Binding Protein/physiology , Energy Metabolism , Fasting , Insulin Resistance , Muscle, Skeletal/physiology , Transcription Factors/physiology , Weight Loss/physiology , Animals , Male , Mice , Mice, Transgenic
17.
Mol Cell ; 56(2): 275-285, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25242143

ABSTRACT

Genomic footprinting has emerged as an unbiased discovery method for transcription factor (TF) occupancy at cognate DNA in vivo. A basic premise of footprinting is that sequence-specific TF-DNA interactions are associated with localized resistance to nucleases, leaving observable signatures of cleavage within accessible chromatin. This phenomenon is interpreted to imply protection of the critical nucleotides by the stably bound protein factor. However, this model conflicts with previous reports of many TFs exchanging with specific binding sites in living cells on a timescale of seconds. We show that TFs with short DNA residence times have no footprints at bound motif elements. Moreover, the nuclease cleavage profile within a footprint originates from the DNA sequence in the factor-binding site, rather than from the protein occupying specific nucleotides. These findings suggest a revised understanding of TF footprinting and reveal limitations in comprehensive reconstruction of the TF regulatory network using this approach.


Subject(s)
Base Sequence , DNA Footprinting , DNA/metabolism , Sequence Analysis, DNA , Transcription Factors/metabolism , Binding Sites/genetics , DNA/chemistry , DNA Cleavage , Deoxyribonuclease I/chemistry , Endodeoxyribonucleases/chemistry , Genomics , Humans , Protein Binding/genetics , Protein Structure, Tertiary , ROC Curve , Transcription Factors/chemistry
18.
Mol Cell ; 51(5): 606-17, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-23993744

ABSTRACT

Transcription factors and DNA regulatory binding motifs are fundamental components of the gene regulatory network. Here, by using genome-wide binding profiling, we show extensive occupancy of transcription factors of myogenesis (MyoD and Myogenin) at extragenic enhancer regions coinciding with RNA synthesis (i.e., eRNA). In particular, multiple regions were transcribed to eRNA within the regulatory region of MYOD1, including previously characterized distal regulatory regions (DRR) and core enhancer (CE). While (CE)RNA enhanced RNA polymerase II (Pol II) occupancy and transcription at MYOD1, (DRR)RNA acted to activate the downstream myogenic genes. The deployment of transcriptional machinery to appropriate loci is contingent on chromatin accessibility, a rate-limiting step preceding Pol II assembly. By nuclease sensitivity assay, we found that eRNAs regulate genomic access of the transcriptional complex to defined regulatory regions. In conclusion, our data suggest that eRNAs contribute to establishing a cell-type-specific transcriptional circuitry by directing chromatin-remodeling events.


Subject(s)
Chromatin/metabolism , Enhancer Elements, Genetic/genetics , MyoD Protein/metabolism , Myogenin/metabolism , RNA/metabolism , Animals , Binding Sites , Cell Line , Chromatin/genetics , Chromatin Assembly and Disassembly , Gene Expression Regulation , Gene Regulatory Networks , Mice , MyoD Protein/genetics , Myogenin/genetics , Promoter Regions, Genetic , RNA/biosynthesis , RNA/genetics , RNA Polymerase II/genetics , RNA Polymerase II/metabolism
19.
Genome Res ; 27(3): 427-439, 2017 03.
Article in English | MEDLINE | ID: mdl-28031249

ABSTRACT

Fasting elicits transcriptional programs in hepatocytes leading to glucose and ketone production. This transcriptional program is regulated by many transcription factors (TFs). To understand how this complex network regulates the metabolic response to fasting, we aimed at isolating the enhancers and TFs dictating it. Measuring chromatin accessibility revealed that fasting massively reorganizes liver chromatin, exposing numerous fasting-induced enhancers. By utilizing computational methods in combination with dissecting enhancer features and TF cistromes, we implicated four key TFs regulating the fasting response: glucocorticoid receptor (GR), cAMP responsive element binding protein 1 (CREB1), peroxisome proliferator activated receptor alpha (PPARA), and CCAAT/enhancer binding protein beta (CEBPB). These TFs regulate fuel production by two distinctly operating modules, each controlling a separate metabolic pathway. The gluconeogenic module operates through assisted loading, whereby GR doubles the number of sites occupied by CREB1 as well as enhances CREB1 binding intensity and increases accessibility of CREB1 binding sites. Importantly, this GR-assisted CREB1 binding was enhancer-selective and did not affect all CREB1-bound enhancers. Single-molecule tracking revealed that GR increases the number and DNA residence time of a portion of chromatin-bound CREB1 molecules. These events collectively result in rapid synergistic gene expression and higher hepatic glucose production. Conversely, the ketogenic module operates via a GR-induced TF cascade, whereby PPARA levels are increased following GR activation, facilitating gradual enhancer maturation next to PPARA target genes and delayed ketogenic gene expression. Our findings reveal a complex network of enhancers and TFs that dynamically cooperate to restore homeostasis upon fasting.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Enhancer Elements, Genetic , Fasting/metabolism , Hepatocytes/metabolism , PPAR alpha/metabolism , Receptors, Glucocorticoid/metabolism , Animals , Binding Sites , CCAAT-Enhancer-Binding Protein-beta/genetics , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , Cyclic AMP Response Element-Binding Protein/genetics , Glucose/metabolism , Ketones/metabolism , Male , Mice , Mice, Inbred C57BL , PPAR alpha/genetics , Receptors, Glucocorticoid/genetics , Transcriptional Activation
20.
Immunity ; 35(6): 919-31, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-22195747

ABSTRACT

Follicular helper T (Tfh) cells comprise an important subset of helper T cells; however, their relationship with other helper lineages is incompletely understood. Herein, we showed interleukin-12 acting via the transcription factor STAT4 induced both Il21 and Bcl6 genes, generating cells with features of both Tfh and Th1 cells. However, STAT4 also induced the transcription factor T-bet. With ChIP-seq, we defined the genome-wide targets of T-bet and found that it repressed Bcl6 and other markers of Tfh cells, thereby attenuating the nascent Tfh cell-like phenotype in the late phase of Th1 cell specification. Tfh-like cells were rapidly generated after Toxoplasma gondii infection in mice, but T-bet constrained Tfh cell expansion and consequent germinal center formation and antibody production. Our data argue that Tfh and Th1 cells share a transitional stage through the signal mediated by STAT4, which promotes both phenotypes. However, T-bet represses Tfh cell functionalities, promoting full Th1 cell differentiation.


Subject(s)
Cell Differentiation , Th1 Cells/cytology , Th1 Cells/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/parasitology , DNA-Binding Proteins/genetics , Gene Expression Regulation/drug effects , Immunophenotyping , Interferon-gamma/metabolism , Interleukin-12/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Proto-Oncogene Proteins c-bcl-6 , STAT4 Transcription Factor/metabolism , T-Box Domain Proteins/metabolism , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Th1 Cells/metabolism , Toxoplasma
SELECTION OF CITATIONS
SEARCH DETAIL