ABSTRACT
Rationale: A U-shaped relationship should exist between lung volume and pulmonary vascular resistance (PVR), with minimal PVR at FRC. Thus, positive end-expiratory pressure (PEEP) in patients with acute respiratory distress syndrome (ARDS) should increase PVR if it induces significant lung distension compared with recruitment. However, this has never been proved in patients. Objectives: To study the effects of PEEP on PVR according to lung recruitability, evaluated by the recruitment-to-inflation (R/I) ratio. Methods: In patients with ARDS, we measured hemodynamic (pulmonary artery catheter), echocardiographic, and ventilatory variables (including esophageal pressure) at both low PEEP and higher PEEP by 10 cm H2O. Preload responsiveness was assessed by the passive leg-raising test at high PEEP. Measurements and Main Results: We enrolled 23 patients, including 10 low recruiters (R/I <0.5) and 13 high recruiters (R/I ⩾0.5). Raising PEEP from 4 (2-5) to 14 (12-15) cm H2O increased PVR in low recruiters (from 160 [120-297] to 243 [166-380] dyn·s/cm5; P < 0.01), whereas PVR was unchanged in high recruiters (from 224 [185-289] to 235 [168-300] dyn·s/cm5; P = 0.55). Right-to-left ventricular end-diastolic area ratio simultaneously increased in low recruiters (from 0.54 [0.50-0.59] to 0.64 [0.56-0.70]; P < 0.01) while remaining stable in high recruiters (from 0.70 [0.65-0.79] to 0.68 [0.58-0.80]; P = 0.48). Raising PEEP decreased cardiac index only in preload responsive patients. Conclusions: PEEP increases PVR only when it induces significant lung distension compared with recruitment according to the R/I ratio. Tailoring PEEP on this recruitability index should mitigate its hemodynamic effects.
Subject(s)
Positive-Pressure Respiration , Respiratory Distress Syndrome , Vascular Resistance , Humans , Positive-Pressure Respiration/methods , Male , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Female , Middle Aged , Vascular Resistance/physiology , Aged , Lung/physiopathology , AdultABSTRACT
BACKGROUND: To detect preload responsiveness in patients ventilated with a tidal volume (Vt) at 6 mL/kg of predicted body weight (PBW), the Vt-challenge consists in increasing Vt from 6 to 8 mL/kg PBW and measuring the increase in pulse pressure variation (PPV). However, this requires an arterial catheter. The perfusion index (PI), which reflects the amplitude of the photoplethysmographic signal, may reflect stroke volume and its respiratory variation (pleth variability index, PVI) may estimate PPV. We assessed whether Vt-challenge-induced changes in PI or PVI could be as reliable as changes in PPV for detecting preload responsiveness defined by a PLR-induced increase in cardiac index (CI) ≥ 10%. METHODS: In critically ill patients ventilated with Vt = 6 mL/kg PBW and no spontaneous breathing, haemodynamic (PICCO2 system) and photoplethysmographic (Masimo-SET technique, sensor placed on the finger or the forehead) data were recorded during a Vt-challenge and a PLR test. RESULTS: Among 63 screened patients, 21 (33%) were excluded because of an unstable PI signal and/or atrial fibrillation and 42 were included. During the Vt-challenge in the 16 preload responders, CI decreased by 4.8 ± 2.8% (percent change), PPV increased by 4.4 ± 1.9% (absolute change), PIfinger decreased by 14.5 ± 10.7% (percent change), PVIfinger increased by 1.9 ± 2.6% (absolute change), PIforehead decreased by 18.7 ± 10.9 (percent change) and PVIforehead increased by 1.0 ± 2.5 (absolute change). All these changes were larger than in preload non-responders. The area under the ROC curve (AUROC) for detecting preload responsiveness was 0.97 ± 0.02 for the Vt-challenge-induced changes in CI (percent change), 0.95 ± 0.04 for the Vt-challenge-induced changes in PPV (absolute change), 0.98 ± 0.02 for Vt-challenge-induced changes in PIforehead (percent change) and 0.85 ± 0.05 for Vt-challenge-induced changes in PIfinger (percent change) (p = 0.04 vs. PIforehead). The AUROC for the Vt-challenge-induced changes in PVIforehead and PVIfinger was significantly larger than 0.50, but smaller than the AUROC for the Vt-challenge-induced changes in PPV. CONCLUSIONS: In patients under mechanical ventilation with no spontaneous breathing and/or atrial fibrillation, changes in PI detected during Vt-challenge reliably detected preload responsiveness. The reliability was better when PI was measured on the forehead than on the fingertip. Changes in PVI during the Vt-challenge also detected preload responsiveness, but with lower accuracy.
Subject(s)
Perfusion Index , Photoplethysmography , Tidal Volume , Humans , Photoplethysmography/methods , Tidal Volume/physiology , Male , Female , Middle Aged , Aged , Perfusion Index/methods , Blood Pressure/physiology , Stroke Volume/physiology , Hemodynamics/physiology , Respiration, Artificial/methodsSubject(s)
Anemia, Sickle Cell , Intensive Care Units , Pain Management , Humans , Anemia, Sickle Cell/therapy , Anemia, Sickle Cell/complications , Adult , France/epidemiology , Male , Female , Pain Management/methods , Surveys and Questionnaires , Respiration, Artificial/adverse effects , Pain/etiologyABSTRACT
BACKGROUND: Tracheal intubation and invasive mechanical ventilation initiation is a procedure at high risk for arterial hypotension in intensive care unit. However, little is known about the relationship between pre-existing peripheral microvascular alteration and post-intubation hemodynamic instability (PIHI). METHODS: Prospective observational monocenter study conducted in an 18-bed medical ICU. Consecutive patients requiring tracheal intubation were eligible for the study. Global hemodynamic parameters (blood pressure, heart rate, cardiac function) and tissue perfusion parameters (arterial lactate, mottling score, capillary refill time [CRT], toe-to-room gradient temperature) were recorded before, 5 min and 2 h after tracheal intubation (TI). Post intubation hemodynamic instability (PIHI) was defined as any hemodynamic event requiring therapeutic intervention. RESULTS: During 1 year, 120 patients were included, mainly male (59%) with a median age of 68 [57-77]. The median SOFA score and SAPS II were 6 [4-9] and 47 [37-63], respectively. The main indications for tracheal intubation were hypoxemia (51%), hypercapnia (13%), and coma (29%). In addition, 48% of patients had sepsis and 16% septic shock. Fifty-one (42%) patients develop PIHI. Univariate analysis identified several baseline factors associated with PIHI, including norepinephrine prior to TI, sepsis, tachycardia, fever, higher SOFA and high SAPSII score, mottling score ≥ 3, high lactate level and prolonged knee CRT. By contrast, mean arterial pressure, baseline cardiac index, and ejection fraction were not different between PIHI and No-PIHI groups. After adjustment on potential confounders, the mottling score was associated with a higher risk for PIHI (adjusted OR: 1.84 [1.21-2.82] per 1 point increased; p = 0.005). Among both global haemodynamics and tissue perfusion parameters, baseline mottling score was the best predictor of PIHI (AUC: 0.72 (CI 95% [0.62-0.81]). CONCLUSIONS: In non-selected critically ill patients requiring invasive mechanical ventilation, tissue hypoperfusion parameters, especially the mottling score, could be helpful to predict PIHI.