Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Funct Integr Genomics ; 22(5): 835-848, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35488101

ABSTRACT

microRNA (miRNA) is a type of endogenous short-chain non-coding RNA with regulatory function found in eukaryotes, which is involved in the regulation of a variety of cellular and biological processes. However, the research on the development of cashmere goat secondary hair follicles is still relatively scarce. In this study, small RNA libraries and mRNA libraries of 45 days, 55 days, 65 days, and 75 days of fetal skin of cashmere goats were constructed, and the constructed libraries were sequenced using Illumina Hiseq4000, and the expression profiles of miRNA and mRNA in cashmere goat fetal skin were obtained. The differentially expressed miRNAs and mRNAs in six control groups were identified and the qRT-PCR experiment shows that the sequencing results are accurate. Sixty-six miRNAs related to secondary hair follicle development were screened, and used TargetScan and miRanda to predict 33 highly expressed miRNA target genes. At the same time, 664 mRNAs related to the development of secondary hair follicles were screened, and GO enrichment and KEGG pathway analysis were performed. It was found that some miRNA target genes were consistent with the screening results of mRNAs related to secondary hair follicle development and were enriched in Notch signaling pathway, TGF-ß signaling pathway. Therefore, miR-145-5p-DLL4, miR-27b-3p-DLL4, miR-30e-5p-DLL4, miR-193b-3p-TGF-ß1, miR-181b-5p-NOTCH2, and miR-103-3p-NOTCH2 regulatory network related to the development of secondary hair follicles were constructed and the results of dual-luciferase reporter gene assay indicated that there is a targeted relationship between chi-miR-30e-5p and DLL4, which will provide a basis for molecular mechanism of miRNA-mRNA in the development of the hair follicles in cashmere goats.


Subject(s)
Goats , MicroRNAs , Animals , Gene Expression Profiling , Hair Follicle , MicroRNAs/genetics , MicroRNAs/metabolism , Morphogenesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
2.
Cell Death Discov ; 10(1): 239, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762505

ABSTRACT

Substantial progress in research on sperm cryopreservation has occurred since the twentieth century, especially focusing on improving sperm freezing procedures and optimizing semen extenders. However, the cellular biological mechanisms of sperm freezing damage are still unclear, which greatly restricts the promotion and development of sperm cryopreservation. An essential component of sperm freezing damage is the occurrence of cell death. Considering the existence of multiple types of cell death pathways, this review discusses connections between characteristics of regulated cell death (e.g., apoptosis and ferroptosis), and accidental cell death (e.g., intracellular ice crystals) with sperm freezing damage and explores possible future research directions in this field.

3.
G3 (Bethesda) ; 11(5)2021 05 07.
Article in English | MEDLINE | ID: mdl-33755111

ABSTRACT

MicroRNAs (miRNAs), a class of 22 nucleotide (nt) noncoding RNAs, negatively regulate mRNA posttranscriptional modification in various biological processes. Morphogenesis of skin hair follicles in cashmere goats is a dynamic process involving many key signaling molecules, but the associated cellular biological mechanisms induced by these key signaling molecules have not been reported. In this study, differential expression, bioinformatics, and Gene Ontology/Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed on miRNA expression profiles of Inner Mongolian cashmere goats at 45, 55, and 65 days during the fetal period, and chi-miR-370-3p was identified and investigated further. Real-time fluorescence quantification (qRT-PCR), dual luciferase reporting, and Western blotting results showed that transforming growth factor beta receptor 2 (TGF-ßR2) and fibroblast growth factor receptor 2 (FGFR2) were the target genes of chi-miR-370-3p. Chi-miR-370-3p also regulated the expression of TGF-ßR2 and FGFR2 at mRNA and protein levels in epithelial cells and dermal fibroblasts. DNA staining, Cell Counting Kit-8, and fluorescein-labelled Annexin V results showed that chi-miR-370-3p inhibited the proliferation of epithelial cells and fibroblasts but had no effect on apoptosis. Cell scratch test results showed that chi-miR-370-3p promoted the migration of epithelial cells and fibroblasts. Chi-miR-370-3p inhibits the proliferation of epithelial cells and fibroblasts by targeting TGF-ßR2 and FGFR2, thereby improving cell migration ability and ultimately regulating the fate of epithelial cells and dermal fibroblasts to develop the placode and dermal condensate, inducing hair follicle morphogenesis.


Subject(s)
Goats , MicroRNAs , Animals , Cell Proliferation , Gene Expression Profiling , Goats/genetics , Hair Follicle , MicroRNAs/genetics , Morphogenesis
4.
Front Genet ; 12: 678825, 2021.
Article in English | MEDLINE | ID: mdl-34178035

ABSTRACT

BACKGROUND: Inner Mongolian cashmere goats have hair of excellent quality and high economic value, and the skin hair follicle traits of cashmere goats have a direct and important effect on cashmere yield and quality. Circular RNA has been studied in a variety of tissues and cells. RESULT: In this study, high-throughput sequencing was used to obtain the expression profiles of circular RNA (circRNA) in the hair follicles of Inner Mongolian cashmere goats at different embryonic stages (45, 55, 65, and 75 days). A total of 21,784 circRNAs were identified. At the same time, the differentially expressed circRNA in the six comparison groups formed in the four stages were: d75vsd45, 59 upregulated and 33 downregulated DE circRNAs; d75vsd55, 61 upregulated and 102 downregulated DE circRNAs; d75vsd65, 32 upregulated and 33 downregulated DE circRNAs; d65vsd55, 67 upregulated and 169 downregulated DE circRNAs; d65vsd45, 96 upregulated and 63 downregulated DE circRNAs; and d55vsd45, 76 upregulated and 42 downregulated DE circRNAs. Six DE circRNA were randomly selected to verify the reliability of the sequencing results by quantitative RT-PCR. Subsequently, the circRNA corresponding host genes were analyzed by the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The results showed that the biological processes related to hair follicle growth and development enriched by GO mainly included hair follicle morphogenesis and cell development, and the signaling pathways related to hair follicle development included the Notch signaling pathway and NF-κB signaling pathway. We combined the DE circRNA of d75vsd45 with miRNA and mRNA databases (unpublished) to construct the regulatory network of circRNA-miRNA-mRNA, and formed a total of 102 pairs of circRNA-miRNA and 126 pairs of miRNA-mRNA interactions. The binding relationship of circRNA3236-chi-miR-27b-3p and circRNA3236-chi-miR-16b-3p was further verified by dual-luciferase reporter assays, and the results showed that circRNA3236 and chi-miR-27b-3p, and circRNA3236 and chi-miR-16b-3p have a targeted binding relationship. CONCLUSION: To summarize, we established the expression profiling of circRNA in the fetal skin hair follicles of cashmere goats, and found that the host gene of circRNA may be involved in the development of hair follicles of cashmere goats. The regulatory network of circRNA-miRNA-mRNA was constructed and preliminarily verified using DE circRNAs.

5.
G3 (Bethesda) ; 11(1)2021 01 18.
Article in English | MEDLINE | ID: mdl-33561234

ABSTRACT

The development of hair follicles (HFs) is dependent on interactions between epithelial cells and dermal fibroblasts, which may play an important role in maintaining the structure of HFs during their development and maturation. Wnt family member 10 (WNT10A) is a hub gene during HF development and maturation that may regulate the proliferation of dermal fibroblasts and epithelial cells through microRNAs (miRNAs) and messenger RNAs (mRNAs) to maintain the structural stability of HFs. In the present study, we confirmed that WNT10A is the target gene of chi-miR-130b-3p by real-time quantitative PCR, western blotting, and a dual-luciferase reporter gene assay. We successfully cultured fetal epithelial cells and dermal fibroblasts using the tissue block attachment method, and Cell Counting Kit-8 (CCK8) results showed that chi-miR-130b-3p regulates epithelial cell and dermal fibroblast proliferation by targeting WNT10A.


Subject(s)
Hair Follicle , MicroRNAs , Animals , Cell Proliferation , China , Fetus , Goats/genetics
6.
PLoS One ; 15(12): e0243507, 2020.
Article in English | MEDLINE | ID: mdl-33351808

ABSTRACT

OBJECTIVE: Mature hair follicles represent an important stage of hair follicle development, which determines the stability of hair follicle structure and its ability to enter the hair cycle. Here, we used weighted gene co-expression network analysis (WGCNA) to identify hub genes of mature skin and hair follicles in Inner Mongolian cashmere goats. METHODS: We used transcriptome sequencing data for the skin of Inner Mongolian cashmere goats from fetal days 45-135 days, and divided the co expressed genes into different modules by WGCNA. Characteristic values were used to screen out modules that were highly expressed in mature skin follicles. Module hub genes were then selected based on the correlation coefficients between the gene and module eigenvalue, gene connectivity, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results were confirmed by quantitative polymerase chain reaction (qPCR). RESULTS: Ten modules were successfully defined, of which one, with a total of 3166 genes, was selected as a specific module through sample and gene expression pattern analyses. A total of 584 candidate hub genes in the module were screened by the correlation coefficients between the genes and module eigenvalue and gene connectivity. Finally, GO/KEGG functional enrichment analyses detected WNT10A as a key gene in the development and maturation of skin hair follicles in fetal Inner Mongolian cashmere goats. qPCR showed that the expression trends of 13 genes from seven fetal skin samples were consistent with the sequencing results, indicating that the sequencing results were reliable.n.


Subject(s)
Goats/genetics , Hair Follicle/embryology , Animals , China , Fetal Development/genetics , Fetus/metabolism , Gene Expression Profiling/methods , Gene Ontology , Gene Regulatory Networks/genetics , Genome/genetics , Goats/embryology , Hair Follicle/metabolism , RNA, Messenger/genetics , Skin/metabolism , Transcriptome/genetics
7.
Arch Anim Breed ; 63(2): 461-470, 2020.
Article in English | MEDLINE | ID: mdl-33473371

ABSTRACT

This study is focused on the detection of ectodysplasin A (EDA) and ectodysplasin A receptor (EDAR) mRNA expression levels and protein positions in seven stages of cashmere goat fetus development (45, 55, 65, 75 95, 115, and 135 d), with the main goal of investigating the effect of EDA and EDAR on genes related to hair follicle development. Quantitative real-time polymerase chain reaction (RT-qPCR) was used to measure EDA and EDAR expression levels in seven stages of cashmere goat fetus development. Immunohistochemistry (IHC) was used to locate EDA and EDAR in the critical stage of fetal hair follicle development (45-135 d). EDA and EDAR expression in fetal fibroblasts and epithelial cells was interfered with by short hairpin RNA (sh-RNA). The results indicated that EDA and EDAR were both expressed in the skin tissue in the seven cashmere goat embryo stages. Moreover, EDA and EDAR play an important role in the formation of embryonic placode (Pc). After interfering with EDA and EDAR, the expression of BMP2, BMP4, noggin, ß -catenin, TGF- ß 2, Wnt-10b, and NOTCH1 in fibroblasts and epithelial cells changed significantly. This study provides a theoretical and experimental basis for further studying the molecular regulation mechanism of hair follicle development.

8.
Sci Rep ; 10(1): 4519, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32161290

ABSTRACT

Inner Mongolia cashmere goats, as an important part of animal husbandry production, play an important role in animal fiber industry. In recent years, scientific research has made a lot of explorations on the molecular regulation mechanism of hair follicle cycle growth, but few studies have been reported on the development of cashmere hair in fetal period. This study was based on the completion of 21 skin samples of mRNA and miRNA sequencing in 7 fetal periods (45 days, 55 days,65 days,75 days,95 days,115 days and 135 days) of the Inner Mongolia Cashmere goat. The target genes of miRNA associated with the development of secondary hair follicles in the cashmere goats were selected through the combination analysis of mRNA and miRNA data. Then the overexpression vector was constructed and the interaction between the miRNA and the target gene was identified by Dual-Luciferase Reporter Gene System. The function and interaction relationship of chi-miR-199a-5p and TGF-ß2 were verified by RT-qPCR and western blot at the level of the fibroblasts in Inner Mongolia Cashmere goat. It provides a theoretical basis for further study of miRNA and its target genes regulating the occurrence and development of skin hair follicles. As the result shows, the expression trends of 7 genes (BAMBI, SMAD1, LTBP1, PPP2R1B, ID4, BMP8B and PITX2) and 7 miRNA (chi-miR-17-5p, chi-miR-125b-3p, chi-miR-21-5p, chi-miR-143-5p and chi-miR-106b-5p) in the skin samples for the seven stages of the fetus were shown to be consistent with the sequencing results. the results of sequencing are reliable. The correlation coefficient of TGF-ß2 and chi-miR-199a-5p in fetal 45d-135d expression is -0.84, showing a strong negative correlation, The target relationship was preliminarily judged. The results of double luciferase vector report showed that chi-miR-199a-5p significantly decreased the expression of luciferase in TGF-ß2 3'UTR, It is determined that there is a reciprocal relationship between them at a specific time. We transfected chi-miR199a-5p-FAM mimics into fibroblasts cultured in vitro from Inner Mongolia cashmere goats. After transfection, the cells were harvested to extract total RNA and protein. The mRNA and protein expression levels of TGF-ß2 in fibroblasts were detected by RT-qPCR and western blot. It was verified that chi-miR-199a-5p inhibited TGF-ß2 expression at both mRNA and protein translation levels in fibroblasts. At the same time, it was again proved that the TGF-ß2 gene is a target gene of chi-miR199a-5p.


Subject(s)
Gene Expression Regulation , Goats/genetics , Hair Follicle/metabolism , MicroRNAs/genetics , RNA Interference , RNA, Messenger/genetics , Animals , Computational Biology/methods , Fibroblasts/metabolism , Gene Expression Profiling , Gene Ontology , Genes, Reporter , High-Throughput Nucleotide Sequencing
9.
Sci Rep ; 9(1): 17735, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31780728

ABSTRACT

The undercoat fiber of the cashmere goat, from the secondary hair follicle (HF), possesses commercial value. However, very few studies have focused on the molecular details of primary and secondary HF initiation and development in goat embryos. In this study, skin samples at embryonic day 45, 55, and 65 (E45, E55, and E65) were collected and prepared for RNA sequencing (RNA-seq). We found that the HF probably initiated from E55 to E65 by analyzing the functional pathways of differentially expressed genes (DEGs). Most key genes in canonical signaling pathways, including WNT, TGF-ß, FGF, Hedgehog, NOTCH, and other factors showed clear expression changes from E55 to E65. We, for the first time, explored alternative splicing (AS) alterations, which showed distinct patterns among these three stages. Functional pathways of AS-regulated genes showed connections to HF development. By comparing the published RNA-seq samples from the E60, E120, and newborn (NB) stages, we found the majority of WNT/ß-catenin signaling genes were important in the initiation of HF development, while other factors including FOXN1, GATA3, and DLX3 may have a consistent influence on HF development. Our investigation supported the time points of embryonic HF initiation and identified genes that have potential functions of embryonic HF initiation and development. We further explored the potential regulatory roles of AS in HF initiation, which extended our knowledge about the molecular mechanisms of HF development.


Subject(s)
Alternative Splicing , Gene Expression Regulation, Developmental , Goats/genetics , Hair Follicle/embryology , Transcriptome , Animals , Gene Expression Profiling , Goats/embryology , Hair Follicle/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL