Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters

Publication year range
1.
Ann Neurol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780377

ABSTRACT

OBJECTIVE: To evaluate: (1) the distribution of gray matter (GM) atrophy in myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (AQP4+NMOSD), and relapsing-remitting multiple sclerosis (RRMS); and (2) the relationship between GM volumes and white matter lesions in various brain regions within each disease. METHODS: A retrospective, multicenter analysis of magnetic resonance imaging data included patients with MOGAD/AQP4+NMOSD/RRMS in non-acute disease stage. Voxel-wise analyses and general linear models were used to evaluate the relevance of regional GM atrophy. For significant results (p < 0.05), volumes of atrophic areas are reported. RESULTS: We studied 135 MOGAD patients, 135 AQP4+NMOSD, 175 RRMS, and 144 healthy controls (HC). Compared with HC, MOGAD showed lower GM volumes in the temporal lobes, deep GM, insula, and cingulate cortex (75.79 cm3); AQP4+NMOSD in the occipital cortex (32.83 cm3); and RRMS diffusely in the GM (260.61 cm3). MOGAD showed more pronounced temporal cortex atrophy than RRMS (6.71 cm3), whereas AQP4+NMOSD displayed greater occipital cortex atrophy than RRMS (19.82 cm3). RRMS demonstrated more pronounced deep GM atrophy in comparison with MOGAD (27.90 cm3) and AQP4+NMOSD (47.04 cm3). In MOGAD, higher periventricular and cortical/juxtacortical lesions were linked to reduced temporal cortex, deep GM, and insula volumes. In RRMS, the diffuse GM atrophy was associated with lesions in all locations. AQP4+NMOSD showed no lesion/GM volume correlation. INTERPRETATION: GM atrophy is more widespread in RRMS compared with the other two conditions. MOGAD primarily affects the temporal cortex, whereas AQP4+NMOSD mainly involves the occipital cortex. In MOGAD and RRMS, lesion-related tract degeneration is associated with atrophy, but this link is absent in AQP4+NMOSD. ANN NEUROL 2024.

2.
Eur Radiol ; 34(3): 1726-1735, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37658891

ABSTRACT

Magnetic resonance imaging (MRI) is the most sensitive technique for detecting inflammatory demyelinating lesions in multiple sclerosis (MS) and plays a crucial role in diagnosis and monitoring treatment effectiveness, and for predicting the disease course. In clinical practice, detection of MS lesions is mainly based on T2-weighted and contrast-enhanced T1-weighted sequences. Contrast-enhancing lesions (CEL) on T1-weighted sequences are related to (sub)acute inflammation, while new or enlarging T2 lesions reflect the permanent footprint from a previous acute inflammatory demyelinating event. These two types of MRI features provide redundant information, at least in regular monitoring of the disease. Due to the concern of gadolinium deposition after repetitive injections of gadolinium-based contrast agents (GBCAs), scientific organizations and regulatory agencies in Europe and North America have proposed that these contrast agents should be administered only if clinically necessary. In this article, we provide data on the mode of action of GBCAs in MS, the indications of the use of these agents in clinical practice, their value in MS for diagnostic, prognostic, and monitoring purposes, and their use in specific populations (children, pregnant women, and breast-feeders). We discuss imaging strategies that achieve the highest sensitivity for detecting CELs in compliance with the safety regulations established by different regulatory agencies. Finally, we will briefly discuss some alternatives to the use of GBCA for detecting blood-brain barrier disruption in MS lesions. CLINICAL RELEVANCE STATEMENT: Although use of GBCA at diagnostic workup of suspected MS is highly valuable for diagnostic and prognostic purposes, their use in routine monitoring is not mandatory and must be reduced, as detection of disease activity can be based on the identification of new or enlarging lesions on T2-weighted images. KEY POINTS: • Both the EMA and the FDA state that the use of GBCA in medicine should be restricted to clinical scenarios in which the additional information offered by the contrast agent is required. • The use of GBCA is generally recommended in the diagnostic workup in subjects with suspected MS and is generally not necessary for routine monitoring in clinical practice. • Alternative MRI-based approaches for detecting acute focal inflammatory MS lesions are not yet ready to be used in clinical practice.


Subject(s)
Contrast Media , Multiple Sclerosis , Pregnancy , Child , Humans , Female , Multiple Sclerosis/diagnosis , Gadolinium , Magnetic Resonance Imaging/methods , Disease Progression , Brain/pathology
3.
Brain ; 146(6): 2489-2501, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36515653

ABSTRACT

MRI and clinical features of myelin oligodendrocyte glycoprotein (MOG)-antibody disease may overlap with those of other inflammatory demyelinating conditions posing diagnostic challenges, especially in non-acute phases and when serologic testing for MOG antibodies is unavailable or shows uncertain results. We aimed to identify MRI and clinical markers that differentiate non-acute MOG-antibody disease from aquaporin 4 (AQP4)-antibody neuromyelitis optica spectrum disorder and relapsing remitting multiple sclerosis, guiding in the identification of patients with MOG-antibody disease in clinical practice. In this cross-sectional retrospective study, data from 16 MAGNIMS centres were included. Data collection and analyses were conducted from 2019 to 2021. Inclusion criteria were: diagnosis of MOG-antibody disease; AQP4-neuromyelitis optica spectrum disorder and multiple sclerosis; brain and cord MRI at least 6 months from relapse; and Expanded Disability Status Scale (EDSS) score on the day of MRI. Brain white matter T2 lesions, T1-hypointense lesions, cortical and cord lesions were identified. Random forest models were constructed to classify patients as MOG-antibody disease/AQP4-neuromyelitis optica spectrum disorder/multiple sclerosis; a leave one out cross-validation procedure assessed the performance of the models. Based on the best discriminators between diseases, we proposed a guide to target investigations for MOG-antibody disease. One hundred and sixty-two patients with MOG-antibody disease [99 females, mean age: 41 (±14) years, median EDSS: 2 (0-7.5)], 162 with AQP4-neuromyelitis optica spectrum disorder [132 females, mean age: 51 (±14) years, median EDSS: 3.5 (0-8)], 189 with multiple sclerosis (132 females, mean age: 40 (±10) years, median EDSS: 2 (0-8)] and 152 healthy controls (91 females) were studied. In young patients (<34 years), with low disability (EDSS < 3), the absence of Dawson's fingers, temporal lobe lesions and longitudinally extensive lesions in the cervical cord pointed towards a diagnosis of MOG-antibody disease instead of the other two diseases (accuracy: 76%, sensitivity: 81%, specificity: 84%, P < 0.001). In these non-acute patients, the number of brain lesions < 6 predicted MOG-antibody disease versus multiple sclerosis (accuracy: 83%, sensitivity: 82%, specificity: 83%, P < 0.001). An EDSS < 3 and the absence of longitudinally extensive lesions in the cervical cord predicted MOG-antibody disease versus AQP4-neuromyelitis optica spectrum disorder (accuracy: 76%, sensitivity: 89%, specificity: 62%, P < 0.001). A workflow with sequential tests and supporting features is proposed to guide better identification of patients with MOG-antibody disease. Adult patients with non-acute MOG-antibody disease showed distinctive clinical and MRI features when compared to AQP4-neuromyelitis optica spectrum disorder and multiple sclerosis. A careful inspection of the morphology of brain and cord lesions together with clinical information can guide further analyses towards the diagnosis of MOG-antibody disease in clinical practice.


Subject(s)
Multiple Sclerosis , Neuromyelitis Optica , Female , Humans , Neuromyelitis Optica/pathology , Retrospective Studies , Myelin-Oligodendrocyte Glycoprotein , Cross-Sectional Studies , Aquaporin 4 , Multiple Sclerosis/diagnostic imaging , Autoantibodies , Magnetic Resonance Imaging
4.
Neurosurg Focus ; 56(1): E9, 2024 01.
Article in English | MEDLINE | ID: mdl-38163349

ABSTRACT

OBJECTIVE: In the era of flow diversion, there is an increasing demand to train neurosurgeons outside the operating room in safely performing clipping of unruptured intracranial aneurysms. This study introduces a clip training simulation platform for residents and aspiring cerebrovascular neurosurgeons, with the aim to visualize peri-aneurysm anatomy and train virtual clipping applications on the matching physical aneurysm cases. METHODS: Novel, cost-efficient techniques allow the fabrication of realistic aneurysm phantom models and the additional integration of holographic augmented reality (AR) simulations. Specialists preselected suitable and unsuitable clips for each of the 5 patient-specific models, which were then used in a standardized protocol involving 9 resident participants. Participants underwent four sessions of clip applications on the models, receiving no interim training (control), a video review session (video), or a video review session and holographic clip simulation training (video + AR) between sessions 2 and 3. The study evaluated objective microsurgical skills, which included clip selection, number of clip applications, active simulation time, wrist tremor analysis during simulations, and occlusion efficacy. Aneurysm occlusions of the reference sessions were assessed by indocyanine green videoangiography, as well as conventional and photon-counting CT scans. RESULTS: A total of 180 clipping procedures were performed without technical complications. The measurements of the active simulation times showed a 39% improvement for all participants. A median of 2 clip application attempts per case was required during the final session, with significant improvement observed in experienced residents (postgraduate year 5 or 6). Wrist tremor improved by 29% overall. The objectively assessed aneurysm occlusion rate (Raymond-Roy class 1) improved from 76% to 80% overall, even reaching 93% in the extensively trained cohort (video + AR) (p = 0.046). CONCLUSIONS: The authors introduce a newly developed simulator training platform combining physical and holographic aneurysm clipping simulators. The development of exchangeable, aneurysm-comprising housings allows objective radio-anatomical evaluation through conventional and photon-counting CT scans. Measurable performance metrics serve to objectively document improvements in microsurgical skills and surgical confidence. Moreover, the different training levels enable a training program tailored to the cerebrovascular trainees' levels of experience and needs.


Subject(s)
Intracranial Aneurysm , Humans , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/surgery , Neurosurgical Procedures/methods , Tremor/surgery , Microsurgery/methods , Computer Simulation
5.
Mult Scler ; 29(11-12): 1406-1417, 2023 10.
Article in English | MEDLINE | ID: mdl-37712486

ABSTRACT

BACKGROUND: Paramagnetic rim lesions (PRLs) are an imaging biomarker in multiple sclerosis (MS), associated with a more severe disease. OBJECTIVES: To determine quantitative magnetic resonance imaging (MRI) metrics of PRLs, lesions with diffuse susceptibility-weighted imaging (SWI)-hypointense signal (DSHLs) and SWI-isointense lesions (SILs), their surrounding periplaque area (PPA) and the normal-appearing white matter (NAWM). METHODS: In a cross-sectional study, quantitative MRI metrics were measured in people with multiple sclerosis (pwMS) using the multi-dynamic multi-echo (MDME) sequence post-processing software "SyMRI." RESULTS: In 30 pwMS, 59 PRLs, 74 DSHLs, and 107 SILs were identified. Beside longer T1 relaxation times of PRLs compared to DSHLs and SILs (2030.5 (1519-2540) vs 1615.8 (1403.3-1953.5) vs 1199.5 (1089.6-1334.6), both p < 0.001), longer T1 relaxation times were observed in the PRL PPA compared to the SIL PPA and the NAWM but not the DSHL PPA. Patients with secondary progressive multiple sclerosis (SPMS) had longer T1 relaxation times in PRLs compared to patients with late relapsing multiple sclerosis (lRMS) (2394.5 (2030.5-3040) vs 1869.3 (1491.4-2451.3), p = 0.015) and also in the PRL PPA compared to patients with early relapsing multiple sclerosis (eRMS) (982 (927-1093.5) vs 904.3 (793.3-958.5), p = 0.013). CONCLUSION: PRLs are more destructive than SILs, leading to diffuse periplaque white matter (WM) damage. The quantitative MRI-based evaluation of the PRL PPA could be a marker for silent progression in pwMS.


Subject(s)
Multiple Sclerosis , White Matter , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , White Matter/diagnostic imaging , White Matter/pathology , Cross-Sectional Studies , Brain/pathology , Magnetic Resonance Imaging/methods
6.
Eur J Neurol ; 30(4): 1025-1034, 2023 04.
Article in English | MEDLINE | ID: mdl-36719184

ABSTRACT

BACKGROUND AND PURPOSE: This study was undertaken to investigate baseline peripapillary retinal nerve fiber layer (pRNFL) and macular ganglion cell and inner plexiform layer (GCIPL) thickness for prediction of disability accumulation in early relapsing multiple sclerosis (RMS). METHODS: From a prospective observational study, we included patients with newly diagnosed RMS and obtained spectral-domain optical coherence tomography scan within 90 days after RMS diagnosis. Impact of pRNFL and GCIPL thickness for prediction of disability accumulation (confirmed Expanded Disability Status Scale [EDSS] score ≥ 3.0) was tested by multivariate (adjusted hazard ratio [HR] with 95% confidence interval [CI]) Cox regression models. RESULTS: We analyzed 231 MS patients (mean age = 30.3 years, SD = 8.1, 74% female) during a median observation period of 61 months (range = 12-93). Mean pRNFL thickness was 92.6 µm (SD = 12.1), and mean GCIPL thickness was 81.4 µm (SD = 11.8). EDSS ≥ 3 was reached by 28 patients (12.1%) after a median 49 months (range = 9-92). EDSS ≥ 3 was predicted with GCIPL < 77 µm (HR = 2.7, 95% CI = 1.6-4.2, p < 0.001) and pRNFL thickness ≤ 88 µm (HR = 2.0, 95% CI = 1.4-3.3, p < 0.001). Higher age (HR = 1.4 per 10 years, p < 0.001), incomplete remission of first clinical attack (HR = 2.2, p < 0.001), ≥10 magnetic resonance imaging (MRI) lesions (HR = 2.0, p < 0.001), and infratentorial MRI lesions (HR = 1.9, p < 0.001) were associated with increased risk of disability accumulation, whereas highly effective disease-modifying treatment was protective (HR = 0.6, p < 0.001). Type of first clinical attack and presence of oligoclonal bands were not significantly associated. CONCLUSIONS: Retinal layer thickness (GCIPL more than pRNFL) is a useful predictor of future disability accumulation in RMS, independently adding to established markers.


Subject(s)
Multiple Sclerosis , Humans , Female , Adult , Child , Male , Multiple Sclerosis/complications , Retinal Ganglion Cells/pathology , Retina/pathology , Prospective Studies , Nerve Fibers/pathology , Tomography, Optical Coherence/methods
7.
J Vasc Surg ; 76(6): 1440-1448, 2022 12.
Article in English | MEDLINE | ID: mdl-36028159

ABSTRACT

OBJECTIVE: Endovascular repair of post-type A aortic dissection (PTAD) after open ascending replacement has recently been shown as safe and feasible, but with limited anatomic applicability because only one stent graft was evaluated. We assessed anatomic and clinical applicability of six commercially available branched/fenestrated stent grafts for endovascular repair of PTAD. METHODS: On postoperative CT scans of 101 patients, we measured the aortic diameter at the sinutubular junction, supra-aortic vessels, and descending aorta, as well as the distances between these landmarks along the outer curvature of the arch and the diameters of the supra-aortic vessel. Anatomic applicability was evaluated according to the instructions for use, clinical applicability with regard to supra-aortic and iliac arteries. Assessed devices were the Cook aortic double branch, Terumo double branch, Najuta fenestrated, Endospan Nexus, Medtronic Mona LSA, and Gore TAG thoracic branch. RESULTS: Single devices were anatomically and clinically applicable between 19 of 101 (Mona LSA) and 83 of 101 (Najuta) cases. Reasons for rejection varied considerably across devices. With all devices available, anatomic applicability was 97 of 101 and clinical applicability 95 of 101. Combinations of a fenestrated and a branched device showed the most favorable clinical applicability for a pair of two devices, ranging from 86 of 101 to 94 of 101. CONCLUSIONS: Anatomic and clinical applicability of endovascular devices for the repair of PTAD is high for fenestrated and branched devices, and very high for the combination of fenestrated and branched devices. Manufacturers should amend specific device requirements for PTAD. Surgeons should emphasize the need for a sufficiently long and straight graft as a potential landing zone.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Dissection , Blood Vessel Prosthesis Implantation , Endovascular Procedures , Humans , Blood Vessel Prosthesis/adverse effects , Blood Vessel Prosthesis Implantation/adverse effects , Aortic Aneurysm, Thoracic/diagnostic imaging , Aortic Aneurysm, Thoracic/surgery , Aortic Aneurysm, Thoracic/complications , Endovascular Procedures/adverse effects , Prosthesis Design , Retrospective Studies , Treatment Outcome , Postoperative Complications/etiology , Risk Factors , Time Factors , Aortic Dissection/diagnostic imaging , Aortic Dissection/surgery , Aortic Dissection/complications , Stents/adverse effects
8.
Mult Scler ; 28(5): 683-690, 2022 04.
Article in English | MEDLINE | ID: mdl-32965168

ABSTRACT

New clinical activity in multiple sclerosis (MS) is often accompanied by acute inflammation which subsides. However, there is growing evidence that a substantial proportion of lesions remain active well beyond the acute phase. Chronic active lesions are most frequently found in progressive MS and are characterised by a border of inflammation associated with iron-enriched cells, leading to ongoing tissue injury. Identifying imaging markers for chronic active lesions in vivo are thus a major research goal. We reviewed the literature on imaging of chronic active lesion in MS, focussing on 'slowly expanding lesions' (SELs), detected by volumetric longitudinal magnetic resonance imaging (MRI) and 'rim-positive' lesions, identified by susceptibility iron-sensitive MRI. Both SELs and rim-positive lesions have been found to be prognostically relevant to future disability. Little is known about the co-occurrence of rims around SELs and their inter-relationship with other emerging techniques such as dynamic contrast enhancement (DCE) and positron emission tomography (PET).


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Brain/pathology , Humans , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Multiple Sclerosis, Chronic Progressive/pathology , Positron-Emission Tomography
9.
Mult Scler ; 28(10): 1541-1552, 2022 09.
Article in English | MEDLINE | ID: mdl-35282741

ABSTRACT

BACKGROUND: Olfactory threshold (OT) is associated with short-term inflammatory activity in relapsing multiple sclerosis (RMS). OBJECTIVE: We aimed to investigate OT for prediction of treatment response in RMS. METHODS: In this 5-year prospective study on 123 RMS patients, OT was measured at disease-modifying treatment (DMT) initiation (M0), after 3 months (M3), and 12 months (M12) by Sniffin' Sticks test. Primary endpoint was defined as an absence of relapse during the observation period, with Expanded Disability Status Scale (EDSS) progression and magnetic resonance imaging (MRI) activity being the secondary endpoints. Optimal cutoff values were determined by receiver operating characteristic analyses and their predictive value assessed by multivariable Cox regression models. RESULTS: Higher OT scores at M0, M3, and M12 were independently associated with decreased relapse probability with the strongest risk reduction at M3 (hazard ratio (HR) = 0.44, p < 0.001). Improvement of OT scores from M0 to M3 (ΔOTM3) was also associated with reduced relapse risk (HR = 0.12, p < 0.001). OT score > 6.5 at M3 was the strongest predictor of relapse freedom (HR = 0.10, p < 0.001) with high diagnostic accuracy (positive predictive value (PPV) = 87%), closely followed by ΔOTM3 ⩾ 0.5 (HR = 0.12, p < 0.001, PPV = 86%). CONCLUSIONS: OT is an independent predictor of freedom of disease activity upon DMT initiation within 5 years and may be a useful biomarker of treatment response.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Disease Progression , Humans , Magnetic Resonance Imaging , Multiple Sclerosis/complications , Multiple Sclerosis, Relapsing-Remitting/complications , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Prospective Studies , Recurrence , Smell
10.
Brain ; 144(5): 1384-1395, 2021 06 22.
Article in English | MEDLINE | ID: mdl-33880511

ABSTRACT

Many studies report an overlap of MRI and clinical findings between patients with relapsing-remitting multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS), which in part is reflective of inclusion of subjects with variable disease duration and short periods of follow-up. To overcome these limitations, we examined the differences between RRMS and SPMS and the relationship between MRI measures and clinical outcomes 30 years after first presentation with clinically isolated syndrome suggestive of multiple sclerosis. Sixty-three patients were studied 30 years after their initial presentation with a clinically isolated syndrome; only 14% received a disease modifying treatment at any time point. Twenty-seven patients developed RRMS, 15 SPMS and 21 experienced no further neurological events; these groups were comparable in terms of age and disease duration. Clinical assessment included the Expanded Disability Status Scale, 9-Hole Peg Test and Timed 25-Foot Walk and the Brief International Cognitive Assessment For Multiple Sclerosis. All subjects underwent a comprehensive MRI protocol at 3 T measuring brain white and grey matter (lesions, volumes and magnetization transfer ratio) and cervical cord involvement. Linear regression models were used to estimate age- and gender-adjusted group differences between clinical phenotypes after 30 years, and stepwise selection to determine associations between a large sets of MRI predictor variables and physical and cognitive outcome measures. At the 30-year follow-up, the greatest differences in MRI measures between SPMS and RRMS were the number of cortical lesions, which were higher in SPMS (the presence of cortical lesions had 100% sensitivity and 88% specificity), and grey matter volume, which was lower in SPMS. Across all subjects, cortical lesions, grey matter volume and cervical cord volume explained 60% of the variance of the Expanded Disability Status Scale; cortical lesions alone explained 43%. Grey matter volume, cortical lesions and gender explained 43% of the variance of Timed 25-Foot Walk. Reduced cortical magnetization transfer ratios emerged as the only significant explanatory variable for the symbol digit modality test and explained 52% of its variance. Cortical involvement, both in terms of lesions and atrophy, appears to be the main correlate of progressive disease and disability in a cohort of individuals with very long follow-up and homogeneous disease duration, indicating that this should be the target of therapeutic interventions.


Subject(s)
Brain/pathology , Disease Progression , Multiple Sclerosis, Chronic Progressive/pathology , Multiple Sclerosis, Relapsing-Remitting/pathology , Aged , Demyelinating Diseases/pathology , Disability Evaluation , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged
11.
Article in English | MEDLINE | ID: mdl-33785581

ABSTRACT

OBJECTIVE: To determine 30-year brain atrophy rates following clinically isolated syndromes and the relationship of atrophy in the first 5 years and clinical outcomes 25 years later. METHODS: A cohort of 132 people who presented with a clinically isolated syndrome suggestive of multiple sclerosis (MS) were recruited between 1984-1987. Clinical and MRI data were collected prospectively over 30 years. Widths of the third ventricle and the medulla oblongata were used as linear atrophy measures. RESULTS: At 30 years, 27 participants remained classified as having had a clinically isolated syndrome, 34 converted to relapsing remitting MS, 26 to secondary progressive MS and 16 had died due to MS. The mean age at baseline was 31.7 years (SD 7.5) and the mean disease duration was 30.8 years (SD 0.9). Change in medullary and third ventricular width within the first 5 years, allowing for white matter lesion accrual and Expanded Disability Status Scale increases over the same period, predicted clinical outcome measures at 30 years. 1 mm of medullary atrophy within the first 5 years increased the risk for secondary progressive MS or MS related death by 30 years by 583% (OR 5.83, 95% CI 1.74 to 19.61, p<0.005), using logistic regression. CONCLUSIONS: Our findings show that brain regional atrophy within 5 years of a clinically isolated syndrome predicts progressive MS or a related death, and disability 25 years later.

12.
Eur Radiol ; 31(6): 4138-4147, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33319330

ABSTRACT

Dual-energy computed tomography (DECT) allows distinguishing between tissues with similar X-ray attenuation but different atomic numbers. Recent studies demonstrated that this technique has several areas of application in patients with ischemic stroke and a potential impact on patient management. After endovascular stroke therapy (EST), hyperdense areas can represent either hemorrhage or contrast staining due to blood-brain barrier disruption, which can be differentiated reliably by DECT. Further applications are improved visualization of early infarctions, compared to single-energy computed tomography, and prediction of transformation into infarction or hemorrhage in contrast-enhancing areas. In addition, DECT allows detection and evaluation of the material composition of intra-arterial clots after EST. This review summarizes the clinical state-of-the-art of DECT in patients with stroke, and features some prospects for future developments. KEY POINTS: • Dual-energy computed tomography (DECT) allows differentiation between tissues with similar X-ray attenuation but differentatomic numbers. • DECT has several areas of application in patients with ischemic stroke and a potential impact on patient management. • Prospects for future developments in DECT may improve treatment decision-making.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Brain Ischemia/diagnostic imaging , Humans , Stroke/diagnostic imaging , Tomography, X-Ray Computed
13.
Eur Radiol ; 31(1): 34-44, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32749588

ABSTRACT

OBJECTIVES: Hippocampal sclerosis (HS) is a common cause of temporal lobe epilepsy. Neuroradiological practice relies on visual assessment, but quantification of HS imaging biomarkers-hippocampal volume loss and T2 elevation-could improve detection. We tested whether quantitative measures, contextualised with normative data, improve rater accuracy and confidence. METHODS: Quantitative reports (QReports) were generated for 43 individuals with epilepsy (mean age ± SD 40.0 ± 14.8 years, 22 men; 15 histologically unilateral HS; 5 bilateral; 23 MR-negative). Normative data was generated from 111 healthy individuals (age 40.0 ± 12.8 years, 52 men). Nine raters with different experience (neuroradiologists, trainees, and image analysts) assessed subjects' imaging with and without QReports. Raters assigned imaging normal, right, left, or bilateral HS. Confidence was rated on a 5-point scale. RESULTS: Correct designation (normal/abnormal) was high and showed further trend-level improvement with QReports, from 87.5 to 92.5% (p = 0.07, effect size d = 0.69). Largest magnitude improvement (84.5 to 93.8%) was for image analysts (d = 0.87). For bilateral HS, QReports significantly improved overall accuracy, from 74.4 to 91.1% (p = 0.042, d = 0.7). Agreement with the correct diagnosis (kappa) tended to increase from 0.74 ('fair') to 0.86 ('excellent') with the report (p = 0.06, d = 0.81). Confidence increased when correctly assessing scans with the QReport (p < 0.001, η2p = 0.945). CONCLUSIONS: QReports of HS imaging biomarkers can improve rater accuracy and confidence, particularly in challenging bilateral cases. Improvements were seen across all raters, with large effect sizes, greatest for image analysts. These findings may have positive implications for clinical radiology services and justify further validation in larger groups. KEY POINTS: • Quantification of imaging biomarkers for hippocampal sclerosis-volume loss and raised T2 signal-could improve clinical radiological detection in challenging cases. • Quantitative reports for individual patients, contextualised with normative reference data, improved diagnostic accuracy and confidence in a group of nine raters, in particular for bilateral HS cases. • We present a pre-use clinical validation of an automated imaging assessment tool to assist clinical radiology reporting of hippocampal sclerosis, which improves detection accuracy.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Adult , Epilepsy/pathology , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/pathology , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Sclerosis/diagnostic imaging , Sclerosis/pathology
14.
Brain ; 139(Pt 3): 807-15, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26912645

ABSTRACT

Multiple sclerosis is a chronic inflammatory disease with primary demyelination and neurodegeneration in the central nervous system. In our study we analysed demyelination and neurodegeneration in a large series of multiple sclerosis brains and provide a map that displays the frequency of different brain areas to be affected by these processes. Demyelination in the cerebral cortex was related to inflammatory infiltrates in the meninges, which was pronounced in invaginations of the brain surface (sulci) and possibly promoted by low flow of the cerebrospinal fluid in these areas. Focal demyelinated lesions in the white matter occurred at sites with high venous density and additionally accumulated in watershed areas of low arterial blood supply. Two different patterns of neurodegeneration in the cortex were identified: oxidative injury of cortical neurons and retrograde neurodegeneration due to axonal injury in the white matter. While oxidative injury was related to the inflammatory process in the meninges and pronounced in actively demyelinating cortical lesions, retrograde degeneration was mainly related to demyelinated lesions and axonal loss in the white matter. Our data show that accumulation of lesions and neurodegeneration in the multiple sclerosis brain does not affect all brain regions equally and provides the pathological basis for the selection of brain areas for monitoring regional injury and atrophy development in future magnetic resonance imaging studies.


Subject(s)
Brain Mapping/methods , Cerebral Cortex/pathology , Demyelinating Diseases/pathology , Multiple Sclerosis/pathology , Nerve Degeneration/pathology , White Matter/pathology , Brain/metabolism , Brain/pathology , Cerebral Cortex/metabolism , Cohort Studies , Demyelinating Diseases/metabolism , Humans , Multiple Sclerosis/metabolism , Nerve Degeneration/metabolism , White Matter/metabolism
15.
Ann Neurol ; 74(6): 848-61, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23868451

ABSTRACT

OBJECTIVE: Iron may contribute to the pathogenesis and progression of multiple sclerosis (MS) due to its accumulation in the human brain with age. Our study focused on nonheme iron distribution and the expression of the iron-related proteins ferritin, hephaestin, and ceruloplasmin in relation to oxidative damage in the brain tissue of 33 MS and 30 control cases. METHODS: We performed (1) whole-genome microarrays including 4 MS and 3 control cases to analyze the expression of iron-related genes, (2) nonheme iron histochemistry, (3) immunohistochemistry for proteins of iron metabolism, and (4) quantitative analysis by digital densitometry and cell counting in regions representing different stages of lesion maturation. RESULTS: We found an age-related increase of iron in the white matter of controls as well as in patients with short disease duration. In chronic MS, however, there was a significant decrease of iron in the normal-appearing white matter (NAWM) corresponding with disease duration, when corrected for age. This decrease of iron in oligodendrocytes and myelin was associated with an upregulation of iron-exporting ferroxidases. In active MS lesions, iron was apparently released from dying oligodendrocytes, resulting in extracellular accumulation of iron and uptake into microglia and macrophages. Iron-containing microglia showed signs of cell degeneration. At lesion edges and within centers of lesions, iron accumulated in astrocytes and axons. INTERPRETATION: Iron decreases in the NAWM of MS patients with increasing disease duration. Cellular degeneration in MS lesions leads to waves of iron liberation, which may propagate neurodegeneration together with inflammatory oxidative burst.


Subject(s)
Brain/metabolism , Iron-Binding Proteins/metabolism , Iron/metabolism , Multiple Sclerosis/metabolism , Neurodegenerative Diseases/metabolism , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Brain/pathology , Cell Count/methods , Ceruloplasmin/metabolism , Child , Female , Ferritins/metabolism , Humans , Iron-Binding Proteins/genetics , Male , Middle Aged , Multiple Sclerosis/pathology , Neurodegenerative Diseases/pathology , Young Adult
16.
Acta Neuropathol ; 128(2): 247-66, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24622774

ABSTRACT

Recent data suggest that oxidative injury may play an important role in demyelination and neurodegeneration in multiple sclerosis (MS). We compared the extent of oxidative injury in MS lesions with that in experimental models driven by different inflammatory mechanisms. It was only in a model of coronavirus-induced demyelinating encephalomyelitis that we detected an accumulation of oxidised phospholipids, which was comparable in extent to that in MS. In both, MS and coronavirus-induced encephalomyelitis, this was associated with massive microglial and macrophage activation, accompanied by the expression of the NADPH oxidase subunit p22phox but only sparse expression of inducible nitric oxide synthase (iNOS). Acute and chronic CD4(+) T cell-mediated experimental autoimmune encephalomyelitis lesions showed transient expression of p22phox and iNOS associated with inflammation. Macrophages in chronic lesions of antibody-mediated demyelinating encephalomyelitis showed lysosomal activity but very little p22phox or iNOS expressions. Active inflammatory demyelinating lesions induced by CD8(+) T cells or by innate immunity showed macrophage and microglial activation together with the expression of p22phox, but low or absent iNOS reactivity. We corroborated the differences between acute CD4(+) T cell-mediated experimental autoimmune encephalomyelitis and acute MS lesions via gene expression studies. Furthermore, age-dependent iron accumulation and lesion-associated iron liberation, as occurring in the human brain, were only minor in rodent brains. Our study shows that oxidative injury and its triggering mechanisms diverge in different models of rodent central nervous system inflammation. The amplification of oxidative injury, which has been suggested in MS, is only reflected to a limited degree in the studied rodent models.


Subject(s)
Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/pathology , Multiple Sclerosis/pathology , Aging/pathology , Aging/physiology , Animals , CD4 Antigens/metabolism , CD8 Antigens/metabolism , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Cuprizone , Encephalomyelitis, Autoimmune, Experimental/immunology , Gene Expression , Iron/metabolism , Lipopolysaccharides/immunology , Macrophages/pathology , Macrophages/physiology , Mice, Inbred C57BL , Microglia/pathology , Microglia/physiology , Multiple Sclerosis/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , Oxidative Stress/physiology , Peptide Fragments/immunology , Rats , Rats, Inbred Lew , Respiratory Burst/physiology , T-Lymphocytes/physiology , T-Lymphocytes/transplantation
17.
J Neurol Neurosurg Psychiatry ; 85(12): 1386-95, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24899728

ABSTRACT

In multiple sclerosis (MS), diffuse degenerative processes in the deep grey matter have been associated with clinical disabilities. We performed a systematic study in MS deep grey matter with a focus on the incidence and topographical distribution of lesions in relation to white matter and cortex in a total sample of 75 MS autopsy patients and 12 controls. In addition, detailed analyses of inflammation, acute axonal injury, iron deposition and oxidative stress were performed. MS deep grey matter was affected by two different processes: the formation of focal demyelinating lesions and diffuse neurodegeneration. Deep grey matter demyelination was most prominent in the caudate nucleus and hypothalamus and could already be seen in early MS stages. Lesions developed on the background of inflammation. Deep grey matter inflammation was intermediate between low inflammatory cortical lesions and active white matter lesions. Demyelination and neurodegeneration were associated with oxidative injury. Iron was stored primarily within oligodendrocytes and myelin fibres and released upon demyelination. In addition to focal demyelinated plaques, the MS deep grey matter also showed diffuse and global neurodegeneration. This was reflected by a global reduction of neuronal density, the presence of acutely injured axons, and the accumulation of oxidised phospholipids and DNA in neurons, oligodendrocytes and axons. Neurodegeneration was associated with T cell infiltration, expression of inducible nitric oxide synthase in microglia and profound accumulation of iron. Thus, both focal lesions as well as diffuse neurodegeneration in the deep grey matter appeared to contribute to the neurological disabilities of MS patients.


Subject(s)
Demyelinating Diseases/pathology , Gray Matter/pathology , Inflammation/pathology , Iron/chemistry , Multiple Sclerosis/pathology , Adult , Aged , Aged, 80 and over , Brain/pathology , Brain Chemistry , Case-Control Studies , Caudate Nucleus/pathology , Disease Progression , Female , Humans , Hypothalamus/pathology , Male , Middle Aged , Retrospective Studies , White Matter/pathology
18.
Brain ; 136(Pt 6): 1799-815, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23687122

ABSTRACT

Cortical lesions constitute an important part of multiple sclerosis pathology. Although inflammation appears to play a role in their formation, the mechanisms leading to demyelination and neurodegeneration are poorly understood. We aimed to identify some of these mechanisms by combining gene expression studies with neuropathological analysis. In our study, we showed that the combination of inflammation, plaque-like primary demyelination and neurodegeneration in the cortex is specific for multiple sclerosis and is not seen in other chronic inflammatory diseases mediated by CD8-positive T cells (Rasmussen's encephalitis), B cells (B cell lymphoma) or complex chronic inflammation (tuberculous meningitis, luetic meningitis or chronic purulent meningitis). In addition, we performed genome-wide microarray analysis comparing micro-dissected active cortical multiple sclerosis lesions with those of tuberculous meningitis (inflammatory control), Alzheimer's disease (neurodegenerative control) and with cortices of age-matched controls. More than 80% of the identified multiple sclerosis-specific genes were related to T cell-mediated inflammation, microglia activation, oxidative injury, DNA damage and repair, remyelination and regenerative processes. Finally, we confirmed by immunohistochemistry that oxidative damage in cortical multiple sclerosis lesions is associated with oligodendrocyte and neuronal injury, the latter also affecting axons and dendrites. Our study provides new insights into the complex mechanisms of neurodegeneration and regeneration in the cortex of patients with multiple sclerosis.


Subject(s)
Cerebral Cortex/pathology , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Inflammation Mediators/physiology , Male , Middle Aged , Oxidative Stress/physiology , Protein Array Analysis/methods , Young Adult
19.
Ann Clin Transl Neurol ; 11(6): 1579-1589, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38689506

ABSTRACT

OBJECTIVE: Mutations in the gene encoding for optineurin (OPTN) have been reported in the context of different neurodegenerative diseases including the amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) spectrum. Based on single case reports, neuropathological data in OPTN mutation carriers have revealed transactive response DNA-binding protein 43 kDa (TDP-43) pathology, in addition to accumulations of tau and alpha-synuclein. Herein, we present two siblings from a consanguineous family with a homozygous frameshift mutation in the OPTN gene and different clinical presentations. METHODS: Both affected siblings underwent (i) clinical, (ii) neurophysiological, (iii) neuropsychological, (iv) radiological, and (v) laboratory examinations, and (vi) whole-exome sequencing (WES). Postmortem histopathological examination was conducted in the index patient, who deceased at the age of 41. RESULTS: The index patient developed rapidly progressing clinical features of upper and lower motor neuron dysfunction as well as apathy and cognitive deterioration at the age of 41. Autopsy revealed an ALS-FTLD pattern associated with prominent neuronal and oligodendroglial TDP-43 pathology, and an atypical limbic 4-repeat tau pathology reminiscent of argyrophilic grain disease. The brother of the index patient exhibited behavioral changes and mnestic deficits at the age of 38 and was diagnosed with behavioral FTD 5 years later, without any evidence of motor neuron dysfunction. WES revealed a homozygous frameshift mutation in the OPTN gene in both siblings (NM_001008212.2: c.1078_1079del; p.Lys360ValfsTer18). INTERPRETATION: OPTN mutations can be associated with extensive TDP-43 pathology and limbic-predominant tauopathy and present with a heterogeneous clinical phenotype within the ALS-FTD spectrum within the same family.


Subject(s)
Amyotrophic Lateral Sclerosis , Cell Cycle Proteins , Frontotemporal Dementia , Membrane Transport Proteins , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/diagnosis , Membrane Transport Proteins/genetics , Cell Cycle Proteins/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/physiopathology , Male , Adult , Female , Pedigree , Transcription Factor TFIIIA/genetics , Siblings , Frameshift Mutation , Homozygote
20.
J Neurol ; 271(2): 804-818, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37805665

ABSTRACT

OBJECTIVE: Recently, the 7 Tesla (7 T) Epilepsy Task Force published recommendations for 7 T magnetic resonance imaging (MRI) in patients with pharmaco-resistant focal epilepsy in pre-surgical evaluation. The objective of this study was to implement and evaluate this consensus protocol with respect to both its practicability and its diagnostic value/potential lesion delineation surplus effect over 3 T MRI in the pre-surgical work-up of patients with pharmaco-resistant focal onset epilepsy. METHODS: The 7 T MRI protocol consisted of T1-weighted, T2-weighted, high-resolution-coronal T2-weighted, fluid-suppressed, fluid-and-white-matter-suppressed, and susceptibility-weighted imaging, with an overall duration of 50 min. Two neuroradiologists independently evaluated the ability of lesion identification, the detection confidence for these identified lesions, and the lesion border delineation at 7 T compared to 3 T MRI. RESULTS: Of 41 recruited patients > 12 years of age, 38 were successfully measured and analyzed. Mean detection confidence scores were non-significantly higher at 7 T (1.95 ± 0.84 out of 3 versus 1.64 ± 1.19 out of 3 at 3 T, p = 0.050). In 50% of epilepsy patients measured at 7 T, additional findings compared to 3 T MRI were observed. Furthermore, we found improved border delineation at 7 T in 88% of patients with 3 T-visible lesions. In 19% of 3 T MR-negative cases a new potential epileptogenic lesion was detected at 7 T. CONCLUSIONS: The diagnostic yield was beneficial, but with 19% new 7 T over 3 T findings, not major. Our evaluation revealed epilepsy outcomes worse than ILAE Class 1 in two out of the four operated cases with new 7 T findings.


Subject(s)
Epilepsies, Partial , Epilepsy , White Matter , Humans , Adult , Consensus , Epilepsy/diagnostic imaging , Epilepsy/surgery , Epilepsies, Partial/diagnostic imaging , Epilepsies, Partial/surgery , Magnetic Resonance Imaging/methods , White Matter/pathology
SELECTION OF CITATIONS
SEARCH DETAIL