Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Magn Reson Med ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968093

ABSTRACT

PURPOSE: T1 mapping and T1-weighted contrasts have a complimentary but currently under utilized role in fetal MRI. Emerging clinical low field scanners are ideally suited for fetal T1 mapping. The advantages are lower T1 values which results in higher efficiency and reduced field inhomogeneities resulting in a decreased requirement for specialist tools. In addition the increased bore size associated with low field scanners provides improved patient comfort and accessibility. This study aims to demonstrate the feasibility of fetal brain T1 mapping at 0.55T. METHODS: An efficient slice-shuffling inversion-recovery echo-planar imaging (EPI)-based T1-mapping and postprocessing was demonstrated for the fetal brain at 0.55T in a cohort of 38 fetal MRI scans. Robustness analysis was performed and placental measurements were taken for validation. RESULTS: High-quality T1 maps allowing the investigation of subregions in the brain were obtained and significant correlation with gestational age was demonstrated for fetal brain T1 maps ( p < 0 . 05 $$ p<0.05 $$ ) as well as regions-of-interest in the deep gray matter and white matter. CONCLUSIONS: Efficient, quantitative T1 mapping in the fetal brain was demonstrated on a clinical 0.55T MRI scanner, providing foundations for both future research and clinical applications including low-field specific T1-weighted acquisitions.

2.
Magn Reson Med ; 91(5): 2028-2043, 2024 May.
Article in English | MEDLINE | ID: mdl-38173304

ABSTRACT

PURPOSE: To develop a framework that jointly estimates rigid motion and polarizing magnetic field (B0 ) perturbations ( δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ ) for brain MRI using a single navigator of a few milliseconds in duration, and to additionally allow for navigator acquisition at arbitrary timings within any type of sequence to obtain high-temporal resolution estimates. THEORY AND METHODS: Methods exist that match navigator data to a low-resolution single-contrast image (scout) to estimate either motion or δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . In this work, called QUEEN (QUantitatively Enhanced parameter Estimation from Navigators), we propose combined motion and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ estimation from a fast, tailored trajectory with arbitrary-contrast navigator data. To this end, the concept of a quantitative scout (Q-Scout) acquisition is proposed from which contrast-matched scout data is predicted for each navigator. Finally, navigator trajectories, contrast-matched scout, and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ are integrated into a motion-informed parallel-imaging framework. RESULTS: Simulations and in vivo experiments show the need to model δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ to obtain accurate motion parameters estimated in the presence of strong δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . Simulations confirm that tailored navigator trajectories are needed to robustly estimate both motion and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . Furthermore, experiments show that a contrast-matched scout is needed for parameter estimation from multicontrast navigator data. A retrospective, in vivo reconstruction experiment shows improved image quality when using the proposed Q-Scout and QUEEN estimation. CONCLUSIONS: We developed a framework to jointly estimate rigid motion parameters and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ from navigators. Combing a contrast-matched scout with the proposed trajectory allows for navigator deployment in almost any sequence and/or timing, which allows for higher temporal-resolution motion and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ estimates.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Retrospective Studies , Motion , Magnetic Resonance Imaging/methods , Neuroimaging , Artifacts , Image Processing, Computer-Assisted/methods , Brain/diagnostic imaging
3.
Magn Reson Med ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860530

ABSTRACT

PURPOSE: This study leverages externally generated Pilot Tone (PT) signals to perform motion-corrected brain MRI for sequences with arbitrary k-space sampling and image contrast. THEORY AND METHODS: PT signals are promising external motion sensors due to their cost-effectiveness, easy workflow, and consistent performance across contrasts and sampling patterns. However, they lack robust calibration pipelines. This work calibrates PT signal to rigid motion parameters acquired during short blocks (˜4 s) of motion calibration (MC) acquisitions, which are short enough to unobstructively fit between acquisitions. MC acquisitions leverage self-navigated trajectories that enable state-of-the-art motion estimation methods for efficient calibration. To capture the range of patient motion occurring throughout the examination, distributed motion calibration (DMC) uses data acquired from MC scans distributed across the entire examination. After calibration, PT is used to retrospectively motion-correct sequences with arbitrary k-space sampling and image contrast. Additionally, a data-driven calibration refinement is proposed to tailor calibration models to individual acquisitions. In vivo experiments involving 12 healthy volunteers tested the DMC protocol's ability to robustly correct subject motion. RESULTS: The proposed calibration pipeline produces pose parameters consistent with reference values, even when distributing only six of these approximately 4-s MC blocks, resulting in a total acquisition time of 22 s. In vivo motion experiments reveal significant ( p < 0.05 $$ p<0.05 $$ ) improved motion correction with increased signal to residual ratio for both MPRAGE and SPACE sequences with standard k-space acquisition, especially when motion is large. Additionally, results highlight the benefits of using a distributed calibration approach. CONCLUSIONS: This study presents a framework for performing motion-corrected brain MRI in sequences with arbitrary k-space encoding and contrast, using externally generated PT signals. The DMC protocol is introduced, promoting observation of patient motion occurring throughout the examination and providing a calibration pipeline suitable for clinical deployment. The method's application is demonstrated in standard volumetric MPRAGE and SPACE sequences.

4.
Magn Reson Med ; 92(3): 1263-1276, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38650351

ABSTRACT

PURPOSE: Widening the availability of fetal MRI with fully automatic real-time planning of radiological brain planes on 0.55T MRI. METHODS: Deep learning-based detection of key brain landmarks on a whole-uterus echo planar imaging scan enables the subsequent fully automatic planning of the radiological single-shot Turbo Spin Echo acquisitions. The landmark detection pipeline was trained on over 120 datasets from varying field strength, echo times, and resolutions and quantitatively evaluated. The entire automatic planning solution was tested prospectively in nine fetal subjects between 20 and 37 weeks. A comprehensive evaluation of all steps, the distance between manual and automatic landmarks, the planning quality, and the resulting image quality was conducted. RESULTS: Prospective automatic planning was performed in real-time without latency in all subjects. The landmark detection accuracy was 4.2 ± $$ \pm $$ 2.6 mm for the fetal eyes and 6.5 ± $$ \pm $$ 3.2 for the cerebellum, planning quality was 2.4/3 (compared to 2.6/3 for manual planning) and diagnostic image quality was 2.2 compared to 2.1 for manual planning. CONCLUSIONS: Real-time automatic planning of all three key fetal brain planes was successfully achieved and will pave the way toward simplifying the acquisition of fetal MRI thereby widening the availability of this modality in nonspecialist centers.


Subject(s)
Brain , Fetus , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Brain/diagnostic imaging , Brain/embryology , Magnetic Resonance Imaging/methods , Female , Pregnancy , Fetus/diagnostic imaging , Image Processing, Computer-Assisted/methods , Deep Learning , Prenatal Diagnosis/methods , Prospective Studies , Echo-Planar Imaging/methods , Algorithms , Image Interpretation, Computer-Assisted/methods
5.
J Pediatr ; 267: 113897, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38171471

ABSTRACT

OBJECTIVE: To assess the relationships between (1) environmental and demographic factors and executive function (EF) in preschool children with congenital heart disease (CHD) and controls and (2) clinical and surgical risk factors and EF in preschool children with CHD. STUDY DESIGN: At 4-6 years of age, parents of children with CHD (n = 51) and controls (n = 124) completed the Behavior Rating Inventory of Executive Function, Preschool Version questionnaire and the Cognitively Stimulating Parenting Scale (CSPS). Multivariable general linear modeling assessed the relationship between Behavior Rating Inventory of Executive Function, Preschool Version composite scores (Inhibitory Self-Control Index [ISCI], Flexibility Index [FI], and Emergent Metacognition Index [EMI]) and group (CHD/control), sex, age at assessment, gestational age, Index of Multiple Deprivation, and CSPS scores. The relationships between CHD type, surgical factors, and brain magnetic resonance imaging injury rating and ISCI, FI, and EMI scores were assessed. RESULTS: The presence of CHD, age at assessment, sex, and Index of Multiple Deprivation were not associated with EF scores. Lower gestational age was associated with greater ISCI and FI scores, and age at assessment was associated with lower FI scores. Group significantly moderated the relationship between CSPS and EF, such that CSPS significantly predicted EF in children with CHD (ISCI: P = .0004; FI: P = .0015; EMI: P = .0004) but not controls (ISCI: P = .2727; FI: P = .6185; EMI: P = .3332). There were no significant relationships between EF scores and surgical factors, CHD type, or brain magnetic resonance imaging injury rating. CONCLUSIONS: Supporting parents to provide a cognitively stimulating home environment may improve EF in children with CHD. The home and parenting environment should be considered when designing intervention studies aimed at improving EF in this patient group.


Subject(s)
Executive Function , Heart Defects, Congenital , Humans , Child, Preschool , Home Environment , Parenting , Parents , Heart Defects, Congenital/complications
6.
Eur Radiol ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326448

ABSTRACT

OBJECTIVES: To evaluate the diagnostic performance and reliability of MRI descriptors used for the detection of Ménière's disease (MD) on delayed post-gadolinium MRI. To determine which combination of descriptors should be optimally applied and whether analysis of the vestibular aqueduct (VA) contributes to the diagnosis. MATERIALS AND METHODS: This retrospective single centre case-control study evaluated delayed post-gadolinium MRI of patients with Ménièriform symptoms examined consecutively between Dec 2017 and March 2023. Two observers evaluated 17 MRI descriptors of MD and quantified perilymphatic enhancement (PLE) in the cochlea. Definite MD ears according to the 2015 Barany Society criteria were compared to control ears. Cohen's kappa and diagnostic odds ratio (DORs) were calculated for each descriptor. Forward stepwise logistic regression determined which combination of MRI descriptors would best predict MD ears, and the area under the receiver operating characteristic curve for this model was measured. RESULTS: A total of 227 patients (mean age 48.3 ± 14.6, 99 men) with 96 definite MD and 78 control ears were evaluated. The presence of saccular abnormality (absent, as large as or confluent with the utricle) performed best with a DOR of 292.6 (95% confidence interval (CI), 38.305-2235.058). All VA descriptors demonstrated excellent reliability and with DORs of 7.761 (95% CI, 3.517-17.125) to 18.1 (95% CI, 8.445-39.170). Combining these saccular abnormalities with asymmetric cochlear PLE and an incompletely visualised VA correctly classified 90.2% of cases (sensitivity 84.4%, specificity 97.4%, AUC 0.938). CONCLUSION: Either absent, enlarged or confluent saccules are the best predictors of MD. Incomplete visualisation of the VA adds value to the diagnosis. CLINICAL RELEVANCE STATEMENT: A number of different MRI descriptors have been proposed for the diagnosis of Ménière's disease, but by establishing the optimally performing MRI features and highlighting new useful descriptors, there is an opportunity to improve the diagnostic performance of Ménière's disease imaging. KEY POINTS: • A comprehensive range of existing and novel vestibular aqueduct delayed post-gadolinium MRI descriptors were compared for their diagnostic performance in Ménière's disease. • Saccular abnormality (absent, confluent with or larger than the utricle) is a reliable descriptor and is the optimal individual MRI predictor of Ménière's disease. • The presence of this saccule descriptor or asymmetric perilymphatic enhancement and incomplete vestibular aqueduct visualisation will optimise the MRI diagnosis of Ménière's disease.

7.
Cereb Cortex ; 33(14): 8921-8941, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37254801

ABSTRACT

Down syndrome (DS) is the most common genetic cause of intellectual disability with a wide range of neurodevelopmental outcomes. To date, there have been very few in vivo neuroimaging studies of the neonatal brain in DS. In this study we used a cross-sectional sample of 493 preterm- to term-born control neonates from the developing Human Connectome Project to perform normative modeling of regional brain tissue volumes from 32 to 46 weeks postmenstrual age, accounting for sex and age variables. Deviation from the normative mean was quantified in 25 neonates with DS with postnatally confirmed karyotypes from the Early Brain Imaging in DS study. Here, we provide the first comprehensive volumetric phenotyping of the neonatal brain in DS, which is characterized by significantly reduced whole brain, cerebral white matter, and cerebellar volumes; reduced relative frontal and occipital lobar volumes, in contrast with enlarged relative temporal and parietal lobar volumes; enlarged relative deep gray matter volume (particularly the lentiform nuclei); and enlargement of the lateral ventricles, amongst other features. In future, the ability to assess phenotypic severity at the neonatal stage may help guide early interventions and, ultimately, help improve neurodevelopmental outcomes in children with DS.


Subject(s)
Down Syndrome , White Matter , Infant, Newborn , Child , Humans , Down Syndrome/diagnostic imaging , Cross-Sectional Studies , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , White Matter/diagnostic imaging
8.
Cereb Cortex ; 33(9): 5585-5596, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36408638

ABSTRACT

Formation of the functional connectome in early life underpins future learning and behavior. However, our understanding of how the functional organization of brain regions into interconnected hubs (centrality) matures in the early postnatal period is limited, especially in response to factors associated with adverse neurodevelopmental outcomes such as preterm birth. We characterized voxel-wise functional centrality (weighted degree) in 366 neonates from the Developing Human Connectome Project. We tested the hypothesis that functional centrality matures with age at scan in term-born babies and is disrupted by preterm birth. Finally, we asked whether neonatal functional centrality predicts general neurodevelopmental outcomes at 18 months. We report an age-related increase in functional centrality predominantly within visual regions and a decrease within the motor and auditory regions in term-born infants. Preterm-born infants scanned at term equivalent age had higher functional centrality predominantly within visual regions and lower measures in motor regions. Functional centrality was not related to outcome at 18 months old. Thus, preterm birth appears to affect functional centrality in regions undergoing substantial development during the perinatal period. Our work raises the question of whether these alterations are adaptive or disruptive and whether they predict neurodevelopmental characteristics that are more subtle or emerge later in life.


Subject(s)
Connectome , Premature Birth , Infant , Pregnancy , Female , Infant, Newborn , Humans , Magnetic Resonance Imaging , Brain , Infant, Premature
9.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33972435

ABSTRACT

During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth.


Subject(s)
Cerebral Cortex/physiology , Corpus Callosum/physiology , Fetal Development/physiology , Thalamus/physiology , White Matter/physiology , Anisotropy , Cerebral Cortex/anatomy & histology , Cerebral Cortex/diagnostic imaging , Connectome , Corpus Callosum/anatomy & histology , Corpus Callosum/diagnostic imaging , Diffusion Tensor Imaging , Female , Fetus , Gestational Age , Humans , Infant , Infant, Newborn , Neurogenesis/physiology , Neurons/cytology , Neurons/physiology , Pregnancy , Pregnancy Trimester, Second , Pregnancy Trimester, Third , Thalamus/anatomy & histology , Thalamus/diagnostic imaging , Uterus/diagnostic imaging , Uterus/physiology , White Matter/anatomy & histology , White Matter/diagnostic imaging
10.
Radiology ; 309(1): e223050, 2023 10.
Article in English | MEDLINE | ID: mdl-37847139

ABSTRACT

Background The benefits of using low-field-strength fetal MRI to evaluate antenatal development include reduced image artifacts, increased comfort, larger bore size, and potentially reduced costs, but studies about fetal low-field-strength MRI are lacking. Purpose To evaluate the reliability and feasibility of low-field-strength fetal MRI to assess anatomic and functional measures in pregnant participants using a commercially available 0.55-T MRI scanner and a comprehensive 20-minute protocol. Materials and Methods This prospective study was performed at a large teaching hospital (St Thomas' Hospital; London, England) from May to November 2022 in healthy pregnant participants and participants with pregnancy-related abnormalities using a commercially available 0.55-T MRI scanner. A 20-minute protocol was acquired including anatomic T2-weighted fast-spin-echo, quantitative T2*, and diffusion sequences. Key measures like biparietal diameter, transcerebellar diameter, lung volume, and cervical length were evaluated by two radiologists and an MRI-experienced obstetrician. Functional organ-specific mean values were given. Comparison was performed with existing published values and higher-field MRI using linear regression, interobserver correlation, and Bland-Altman plots. Results A total of 79 fetal MRI examinations were performed (mean gestational age, 29.4 weeks ± 5.5 [SD] [age range, 17.6-39.3 weeks]; maternal age, 34.4 years ± 5.3 [age range, 18.4-45.5 years]) in 47 healthy pregnant participants (control participants) and in 32 participants with pregnancy-related abnormalities. The key anatomic two-dimensional measures for the 47 healthy participants agreed with large cross-sectional 1.5-T and 3-T control studies. The interobserver correlations for the biparietal diameter in the first 40 consecutive scans were 0.96 (95% CI: 0.7, 0.99; P = .002) for abnormalities and 0.93 (95% CI: 0.86, 0.97; P < .001) for control participants. Functional features, including placental and brain T2* and placental apparent diffusion coefficient values, strongly correlated with gestational age (mean placental T2* in the control participants: 5.2 msec of decay per week; R2 = 0.66; mean T2* at 30 weeks, 176.6 msec; P < .001). Conclusion The 20-minute low-field-strength fetal MRI examination protocol was capable of producing reliable structural and functional measures of the fetus and placenta in pregnancy. Clinical trial registration no. REC 21/LO/0742 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Gowland in this issue.


Subject(s)
Magnetic Resonance Imaging , Placenta , Adolescent , Adult , Female , Humans , Middle Aged , Pregnancy , Young Adult , Cross-Sectional Studies , Feasibility Studies , Fetus , Magnetic Resonance Imaging/methods , Prospective Studies , Reproducibility of Results
11.
Magn Reson Med ; 89(3): 937-950, 2023 03.
Article in English | MEDLINE | ID: mdl-36352772

ABSTRACT

PURPOSE: The MP2RAGE sequence is typically optimized for either T1 -weighted uniform image (UNI) or gray matter-dominant fluid and white matter suppression (FLAWS) contrast images. Here, the purpose was to optimize an MP2RAGE protocol at 7 Tesla to provide UNI and FLAWS images simultaneously in a clinically applicable acquisition time at <0.7 mm isotropic resolution. METHODS: Using the extended phase graph formalism, the signal evolution of the MP2RAGE sequence was simulated incorporating T2 relaxation, diffusion, RF spoiling, and B1 + variability. Flip angles and TI were optimized at different TRs (TRMP2RAGE ) to produce an optimal contrast-to-noise ratio for UNI and FLAWS images. Simulation results were validated by comparison to MP2RAGE brain scans of 5 healthy subjects, and a final protocol at TRMP2RAGE  = 4000 ms was applied in 19 subjects aged 8-62 years with and without epilepsy. RESULTS: FLAWS contrast images could be obtained while maintaining >85% of the optimal UNI contrast-to-noise ratio. Using TI1 /TI2 /TRMP2RAGE of 650/2280/4000 ms, 6/8 partial Fourier in the inner phase-encoding direction, and GRAPPA factor = 4 in the other, images with 0.65 mm isotropic resolution were produced in <7.5 min. The contrast-to-noise ratio was around 20% smaller at TRMP2RAGE  = 4000 ms compared to that at TRMP2RAGE  = 5000 ms; however, the 20% shorter duration makes TRMP2RAGE  = 4000 ms a good candidate for clinical applications example, pediatrics. CONCLUSION: FLAWS and UNI images could be obtained in a single scan with 0.65 mm isotropic resolution, providing a set of high-contrast images and full brain coverage in a clinically applicable scan time. Images with excellent anatomical detail were demonstrated over a wide age range using the optimized parameter set.


Subject(s)
White Matter , Humans , Child , White Matter/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Gray Matter , Neuroimaging
12.
Magn Reson Med ; 89(3): 1016-1025, 2023 03.
Article in English | MEDLINE | ID: mdl-36372971

ABSTRACT

PURPOSE: Ultralow-field (ULF) point-of-care MRI systems allow image acquisition without interrupting medical provision, with neonatal clinical care being an important potential application. The ability to measure neonatal brain tissue T1 is a key enabling technology for subsequent structural image contrast optimization, as well as being a potential biomarker for brain development. Here we describe an optimized strategy for neonatal T1 mapping at ULF. METHODS: Examinations were performed on a 64-mT portable MRI system. A phantom validation experiment was performed, and a total of 33 in vivo exams were acquired from 28 neonates with postmenstrual age ranging from 31+4 to 49+0  weeks. Multiple inversion-recovery turbo spin-echo sequences were acquired with differing inversion and repetition times. An analysis pipeline incorporating inter-sequence motion correction generated proton density and T1 maps. Regions of interest were placed in the cerebral deep gray matter, frontal white matter, and cerebellum. Weighted linear regression was used to predict T1 as a function of postmenstrual age. RESULTS: Reduction of T1 with postmenstrual age is observed in all measured brain tissue; the change in T1 per week and 95% confidence intervals is given by dT1  = -21 ms/week [-25, -16] (cerebellum), dT1  = -14 ms/week [-18, -10] (deep gray matter), and dT1  = -35 ms/week [-45, -25] (white matter). CONCLUSION: Neonatal T1 values at ULF are shorter than those previously described at standard clinical field strengths, but longer than those of adults at ULF. T1 reduces with postmenstrual age and is therefore a candidate biomarker for perinatal brain development.


Subject(s)
Brain , White Matter , Adult , Infant, Newborn , Humans , Infant , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Cerebellum , Linear Models , Brain Mapping/methods
13.
Eur Radiol ; 33(10): 7113-7135, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37171493

ABSTRACT

OBJECTIVES: Delayed post-gadolinium magnetic resonance imaging (MRI) detects changes of endolymphatic hydrops (EH) within the inner ear in Meniere's disease (MD). A systematic review with meta-analysis was conducted to summarise the diagnostic performance of MRI descriptors across the range of MD clinical classifications. MATERIALS AND METHODS: Case-controlled studies documenting the diagnostic performance of MRI descriptors in distinguishing MD ears from asymptomatic ears or ears with other audio-vestibular conditions were identified (MEDLINE, EMBASE, Web of Science, Scopus databases: updated 17/2/2022). Methodological quality was evaluated with Quality Assessment of Diagnostic Accuracy Studies version 2. Results were pooled using a bivariate random-effects model for evaluation of sensitivity, specificity and diagnostic odds ratio (DOR). Meta-regression evaluated sources of heterogeneity, and subgroup analysis for individual clinical classifications was performed. RESULTS: The meta-analysis included 66 unique studies and 3073 ears with MD (mean age 40.2-67.2 years), evaluating 11 MRI descriptors. The combination of increased perilymphatic enhancement (PLE) and EH (3 studies, 122 MD ears) achieved the highest sensitivity (87% (95% CI: 79.92%)) whilst maintaining high specificity (91% (95% CI: 85.95%)). The diagnostic performance of "high grade cochlear EH" and "any EH" descriptors did not significantly differ between monosymptomatic cochlear MD and the latest reference standard for definite MD (p = 0.3; p = 0.09). Potential sources of bias were case-controlled design, unblinded observers and variable reference standard, whilst differing MRI techniques introduced heterogeneity. CONCLUSIONS: The combination of increased PLE and EH optimised sensitivity and specificity for MD, whilst some MRI descriptors also performed well in diagnosing monosymptomatic cochlear MD. KEY POINTS: • A meta-analysis of delayed post-gadolinium magnetic resonance imaging (MRI) for the diagnosis of Meniere's disease is reported for the first time and comprised 66 studies (3073 ears). • Increased enhancement of the perilymphatic space of the inner ear is shown to be a key MRI feature for the diagnosis of Meniere's disease. • MRI diagnosis of Meniere's disease can be usefully applied across a range of clinical classifications including patients with cochlear symptoms alone.


Subject(s)
Ear, Inner , Endolymphatic Hydrops , Meniere Disease , Humans , Adult , Middle Aged , Aged , Meniere Disease/diagnostic imaging , Gadolinium/pharmacology , Endolymphatic Hydrops/diagnosis , Ear, Inner/diagnostic imaging , Magnetic Resonance Imaging/methods
14.
Neuroimage ; 257: 119319, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35589001

ABSTRACT

The development of perinatal brain connectivity underpins motor, cognitive and behavioural abilities in later life. Diffusion MRI allows the characterisation of subtle inter-individual differences in structural brain connectivity. Individual brain connectivity maps (connectomes) are by nature high in dimensionality and complex to interpret. Machine learning methods are a powerful tool to uncover properties of the connectome which are not readily visible and can give us clues as to how and why individual developmental trajectories differ. In this manuscript we used Deep Neural Networks and Random Forests to predict demographic and neurodevelopmental characteristics from neonatal structural connectomes in a large sample of babies (n = 524) from the developing Human Connectome Project. We achieved an accurate prediction of post menstrual age (PMA) at scan in term-born infants (mean absolute error (MAE) = 0.72 weeks, r = 0.83 and p < 0.001). We also achieved good accuracy when predicting gestational age at birth in a cohort of term and preterm babies scanned at term equivalent age (MAE = 2.21 weeks, r = 0.82, p < 0.001). We subsequently used sensitivity analysis to obtain feature relevance from our prediction models, with the most important connections for prediction of PMA and GA found to predominantly involve frontal and temporal regions, thalami, and basal ganglia. From our models of PMA at scan for infants born at term, we computed a brain maturation index (predicted age minus actual age) of individual preterm neonates and found a significant correlation between this index and motor outcome at 18 months corrected age. Our results demonstrate the applicability of machine learning techniques in analyses of the neonatal connectome and suggest that a neural substrate of brain maturation with implications for future neurodevelopment is detectable at term equivalent age from the neonatal connectome.


Subject(s)
Connectome , Brain/diagnostic imaging , Connectome/methods , Diffusion Magnetic Resonance Imaging , Female , Gestational Age , Humans , Infant , Infant, Newborn , Infant, Premature , Magnetic Resonance Imaging , Pregnancy
15.
Hum Brain Mapp ; 43(5): 1577-1589, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34897872

ABSTRACT

Infants born in early term (37-38 weeks gestation) experience slower neurodevelopment than those born at full term (40-41 weeks gestation). While this could be due to higher perinatal morbidity, gestational age at birth may also have a direct effect on the brain. Here we characterise brain volume and white matter correlates of gestational age at birth in healthy term-born neonates and their relationship to later neurodevelopmental outcome using T2 and diffusion weighted MRI acquired in the neonatal period from a cohort (n = 454) of healthy babies born at term age (>37 weeks gestation) and scanned between 1 and 41 days after birth. Images were analysed using tensor-based morphometry and tract-based spatial statistics. Neurodevelopment was assessed at age 18 months using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). Infants born earlier had higher relative ventricular volume and lower relative brain volume in the deep grey matter, cerebellum and brainstem. Earlier birth was also associated with lower fractional anisotropy, higher mean, axial, and radial diffusivity in major white matter tracts. Gestational age at birth was positively associated with all Bayley-III subscales at age 18 months. Regression models predicting outcome from gestational age at birth were significantly improved after adding neuroimaging features associated with gestational age at birth. This work adds to the body of evidence of the impact of early term birth and highlights the importance of considering the effect of gestational age at birth in future neuroimaging studies including term-born babies.


Subject(s)
Diffusion Tensor Imaging , White Matter , Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Female , Gestational Age , Humans , Infant , Infant, Newborn , Infant, Premature , Pregnancy , White Matter/diagnostic imaging
16.
Magn Reson Med ; 88(3): 1434-1449, 2022 09.
Article in English | MEDLINE | ID: mdl-35666836

ABSTRACT

PURPOSE: To evaluate specific absorption rate (SAR) and temperature distributions resulting from pediatric exposure to a 7T head coil. METHODS: Exposure from a 297-MHz birdcage head transmit coil (CP mode single-channel transmission) was simulated in several child models (ages 3-14, mass 13.9-50.4 kg) and one adult, using time-domain electromagnetic and thermal solvers. Position variability, age-related changes in dielectric properties, and differences in thermoregulation were also considered. RESULTS: Age-adjusted dielectric properties had little effect in this population. Head average SAR (hdSAR) was the limiting factor for all models centered in the coil. The value of hdSAR (normalized to net power) was found to decrease linearly with increasing mass (R2  = 0.86); no equivalent relationship for peak-spatial 10g averaged SAR (psSAR10g ) was identified. Relatively small (< 10%) variability was observed in hdSAR for position shifts of ±25 mm in each orthogonal direction when normalized to net power; accounting for B1+$$ {\mathrm{B}}_1^{+} $$ efficiency can lead to much larger variability. Position sensitivity of psSAR10g was greater, but in most cases hdSAR remained the limiting quantity. For thermal simulations, if blood temperature is fixed (i.e., asserting good thermoregulation), maximum temperatures are compliant with International Electrotechnical Commission limits during 60-min exposure at the SAR limit. Introducing variable blood temperature leads to core temperature changes proportional to whole-body averaged SAR, exceeding guideline limits for all child models. CONCLUSIONS: Children experienced higher SAR than adults for the 297-MHz head transmit coil examined in this work. Thermal simulations suggest that core temperature changes could occur in smaller subjects, although experimental data are needed for validation.


Subject(s)
Heating , Magnetic Resonance Imaging , Adolescent , Adult , Body Temperature , Child , Child, Preschool , Computer Simulation , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Radio Waves , Temperature
17.
Magn Reson Med ; 88(2): 817-831, 2022 08.
Article in English | MEDLINE | ID: mdl-35526212

ABSTRACT

PURPOSE: To develop a fully data-driven retrospective intrascan motion-correction framework for volumetric brain MRI at ultrahigh field (7 Tesla) that includes modeling of pose-dependent changes in polarizing magnetic (B0 ) fields. THEORY AND METHODS: Tissue susceptibility induces spatially varying B0 distributions in the head, which change with pose. A physics-inspired B0 model has been deployed to model the B0 variations in the head and was validated in vivo. This model is integrated into a forward parallel imaging model for imaging in the presence of motion. Our proposal minimizes the number of added parameters, enabling the developed framework to estimate dynamic B0 variations from appropriately acquired data without requiring navigators. The effect on data-driven motion correction is validated in simulations and in vivo. RESULTS: The applicability of the physics-inspired B0 model was confirmed in vivo. Simulations show the need to include the pose-dependent B0 fields in the reconstruction to improve motion-correction performance and the feasibility of estimating B0 evolution from the acquired data. The proposed motion and B0 correction showed improved image quality for strongly corrupted data at 7 Tesla in simulations and in vivo. CONCLUSION: We have developed a motion-correction framework that accounts for and estimates pose-dependent B0 fields. The method improves current state-of-the-art data-driven motion-correction techniques when B0 dependencies cannot be neglected. The use of a compact physics-inspired B0 model together with leveraging the parallel imaging encoding redundancy and previously proposed optimized sampling patterns enables a purely data-driven approach.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Artifacts , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Retrospective Studies
18.
Magn Reson Med ; 87(1): 220-235, 2022 01.
Article in English | MEDLINE | ID: mdl-34418151

ABSTRACT

PURPOSE: Magnetization transfer (MT) and inhomogeneous MT (ihMT) contrasts are used in MRI to provide information about macromolecular tissue content. In particular, MT is sensitive to macromolecules, and ihMT appears to be specific to myelinated tissue. This study proposes a technique to characterize MT and ihMT properties from a single acquisition, producing both semiquantitative contrast ratios and quantitative parameter maps. THEORY AND METHODS: Building on previous work that uses multiband RF pulses to efficiently generate ihMT contrast, we propose a cyclic steady-state approach that cycles between multiband and single-band pulses to boost the achieved contrast. Resultant time-variable signals are reminiscent of an MR fingerprinting acquisition, except that the signal fluctuations are entirely mediated by MT effects. A dictionary-based low-rank inversion method is used to reconstruct the resulting images and to produce both semiquantitative MT ratio and ihMT ratio maps, as well as quantitative parameter estimates corresponding to an ihMT tissue model. RESULTS: Phantom and in vivo brain data acquired at 1.5 Tesla demonstrate the expected contrast trends, with ihMT ratio maps showing contrast more specific to white matter, as has been reported by others. Quantitative estimation of semisolid fraction and dipolar T1 was also possible and yielded measurements consistent with literature values in the brain. CONCLUSION: By cycling between multiband and single-band pulses, an entirely MT-mediated fingerprinting method was demonstrated. This proof-of-concept approach can be used to generate semiquantitative maps and quantitatively estimate some macromolecular-specific tissue parameters.


Subject(s)
Image Processing, Computer-Assisted , White Matter , Brain/diagnostic imaging , Magnetic Resonance Imaging , Myelin Sheath , White Matter/diagnostic imaging
19.
Magn Reson Med ; 88(1): 180-194, 2022 07.
Article in English | MEDLINE | ID: mdl-35266204

ABSTRACT

PURPOSE: This work proposes a novel RF pulse design for parallel transmit (pTx) systems to obtain uniform saturation of semisolid magnetization for magnetization transfer (MT) contrast in the presence of transmit field B1+ inhomogeneities. The semisolid magnetization is usually modeled as being purely longitudinal, with the applied B1+ field saturating but not rotating its magnetization; thus, standard pTx pulse design methods do not apply. THEORY AND METHODS: Pulse design for saturation homogeneity (PUSH) optimizes pTx RF pulses by considering uniformity of root-mean squared B1+ , B1rms , which relates to the rate of semisolid saturation. Here we considered designs consisting of a small number of spatially non-selective sub-pulses optimized over either a single 2D plane or 3D. Simulations and in vivo experiments on a 7T Terra system with an 8-TX Nova head coil in five subjects were carried out to study the homogenization of B1rms and of the MT contrast by acquiring MT ratio maps. RESULTS: Simulations and in vivo experiments showed up to six and two times more uniform B1rms compared to circular polarized (CP) mode for 2D and 3D optimizations, respectively. This translated into 4 and 1.25 times more uniform MT contrast, consistently for all subjects, where two sub-pulses were enough for the implementation and coil used. CONCLUSION: The proposed PUSH method obtains more uniform and higher MT contrast than CP mode within the same specific absorption rate (SAR) budget.


Subject(s)
Brain , Magnetic Resonance Imaging , Algorithms , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Radio Waves
20.
J Cardiovasc Magn Reson ; 24(1): 71, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36517850

ABSTRACT

BACKGROUND: Image-domain motion correction of black-blood contrast T2-weighted fetal cardiovascular magnetic resonance imaging (CMR) using slice-to-volume registration (SVR) provides high-resolution three-dimensional (3D) images of the fetal heart providing excellent 3D visualisation of vascular anomalies [1]. However, 3D segmentation of these datasets, important for both clinical reporting and the application of advanced analysis techniques is currently a time-consuming process requiring manual input with potential for inter-user variability. METHODS: In this work, we present novel 3D fetal CMR population-averaged atlases of normal and abnormal fetal cardiovascular anatomy. The atlases are created using motion-corrected 3D reconstructed volumes of 86 third trimester fetuses (gestational age range 29-34 weeks) including: 28 healthy controls, 20 cases with postnatally confirmed neonatal coarctation of the aorta (CoA) and 38 vascular rings (21 right aortic arch (RAA), 17 double aortic arch (DAA)). We used only high image quality datasets with isolated anomalies and without any other deviations in the cardiovascular anatomy.In addition, we implemented and evaluated atlas-guided registration and deep learning (UNETR) methods for automated 3D multi-label segmentation of fetal cardiac vessels. We used images from CoA, RAA and DAA cohorts including: 42 cases for training (14 from each cohort), 3 for validation and 6 for testing. In addition, the potential limitations of the network were investigated on unseen datasets including 3 early gestational age (22 weeks) and 3 low SNR cases. RESULTS: We created four atlases representing the average anatomy of the normal fetal heart, postnatally confirmed neonatal CoA, RAA and DAA. Visual inspection was undertaken to verify expected anatomy per subgroup. The results of the multi-label cardiac vessel UNETR segmentation showed 100[Formula: see text] per-vessel detection rate for both normal and abnormal aortic arch anatomy. CONCLUSIONS: This work introduces the first set of 3D black-blood T2-weighted CMR atlases of normal and abnormal fetal cardiovascular anatomy including detailed segmentation of the major cardiovascular structures. Additionally, we demonstrated the general feasibility of using deep learning for multi-label vessel segmentation of 3D fetal CMR images.


Subject(s)
Aortic Coarctation , Heart Defects, Congenital , Humans , Infant , Infant, Newborn , Aorta, Thoracic/diagnostic imaging , Fetal Heart/diagnostic imaging , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Predictive Value of Tests
SELECTION OF CITATIONS
SEARCH DETAIL