Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Proc Natl Acad Sci U S A ; 121(22): e2322524121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781216

ABSTRACT

Long noncoding RNAs (lncRNAs) account for the largest portion of RNA from the transcriptome, yet most of their functions remain unknown. Here, we performed two independent high-throughput CRISPRi screens to understand the role of lncRNAs in monocyte function and differentiation. The first was a reporter-based screen to identify lncRNAs that regulate TLR4-NFkB signaling in human monocytes and the second screen identified lncRNAs involved in monocyte to macrophage differentiation. We successfully identified numerous noncoding and protein-coding genes that can positively or negatively regulate inflammation and differentiation. To understand the functional roles of lncRNAs in both processes, we chose to further study the lncRNA LOUP [lncRNA originating from upstream regulatory element of SPI1 (also known as PU.1)], as it emerged as a top hit in both screens. Not only does LOUP regulate its neighboring gene, the myeloid fate-determining factor SPI1, thereby affecting monocyte to macrophage differentiation, but knockdown of LOUP leads to a broad upregulation of NFkB-targeted genes at baseline and upon TLR4-NFkB activation. LOUP also harbors three small open reading frames capable of being translated and are responsible for LOUP's ability to negatively regulate TLR4/NFkB signaling. This work emphasizes the value of high-throughput screening to rapidly identify functional lncRNAs in the innate immune system.


Subject(s)
Cell Differentiation , Inflammation , Macrophages , Monocytes , RNA, Long Noncoding , Signal Transduction , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Macrophages/metabolism , Macrophages/cytology , Cell Differentiation/genetics , Monocytes/metabolism , Monocytes/cytology , Inflammation/genetics , Inflammation/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , NF-kappa B/metabolism , Trans-Activators/metabolism , Trans-Activators/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , CRISPR-Cas Systems , Gene Expression Regulation
2.
J Immunol ; 208(8): 1886-1900, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35365562

ABSTRACT

Our respiratory system is vital to protect us from the surrounding nonsterile environment; therefore, it is critical for a state of homeostasis to be maintained through a balance of inflammatory cues. Recent studies have shown that actively transcribed noncoding regions of the genome are emerging as key regulators of biological processes, including inflammation. lincRNA-Cox2 is one such example of an inflammatory inducible long intergenic noncoding RNA functioning to fine-tune immune gene expression. Using bulk and single-cell RNA sequencing, in addition to FACS, we find that lincRNA-Cox2 is most highly expressed in the lung and is most upregulated after LPS-induced lung injury (acute lung injury [ALI]) within alveolar macrophages, where it functions to regulate inflammation. We previously reported that lincRNA-Cox2 functions to regulate its neighboring protein Ptgs2 in cis, and in this study, we use genetic mouse models to confirm its role in regulating gene expression more broadly in trans during ALI. Il6, Ccl3, and Ccl5 are dysregulated in the lincRNA-Cox2-deficient mice and can be rescued to wild type levels by crossing the deficient mice with our newly generated lincRNA-Cox2 transgenic mice, confirming that this gene functions in trans. Many genes are specifically regulated by lincRNA-Cox2 within alveolar macrophages originating from the bone marrow because the phenotype can be reversed by transplantation of wild type bone marrow into the lincRNA-Cox2-deficient mice. In conclusion, we show that lincRNA-Cox2 is a trans-acting long noncoding RNA that functions to regulate immune responses and maintain homeostasis within the lung at baseline and on LPS-induced ALI.


Subject(s)
Acute Lung Injury , Cyclooxygenase 2 , Inflammation , Macrophages, Alveolar , RNA, Long Noncoding , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Animals , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Disease Models, Animal , Inflammation/genetics , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Macrophages, Alveolar/metabolism , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
3.
Adv Exp Med Biol ; 1363: 179-183, 2022.
Article in English | MEDLINE | ID: mdl-35220571

ABSTRACT

Until somewhat recently, the complexity of the human genome has not been well understood. With advancements in sequencing technology, we now know that nearly the whole genome is transcribed but a very small portion of those transcripts code for proteins. As the research of non-coding genes and transcripts has evolved rapidly in the last decade, it has become clear that many of them serve important biological functions in many previously well-studied cell processes. As the previous chapters in this book have reviewed, the field of noncoding RNA research has provided new insights into specific disease states, especially those driven by inflammation. Understanding the basic mechanisms of non-coding RNAs in the context of inflammation has led to prospective therapeutics that may overcome many of the challenges faced in diagnosing and treating inflammatory diseases. In this final chapter we discuss the current state of the field of non-coding RNA therapeutics and how it may evolve to overcome the short cummings we currently face with diagnosing and treating inflammatory diseases.


Subject(s)
RNA, Long Noncoding , Humans , Inflammation/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Untranslated/genetics
4.
Cell Rep ; 40(3): 111104, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858545

ABSTRACT

RAS genes are the most frequently mutated oncogenes in cancer, yet the effects of oncogenic RAS signaling on the noncoding transcriptome remain unclear. We analyzed the transcriptomes of human airway and bronchial epithelial cells transformed with mutant KRAS to define the landscape of KRAS-regulated noncoding RNAs. We find that oncogenic KRAS signaling upregulates noncoding transcripts throughout the genome, many of which arise from transposable elements (TEs). These TE RNAs exhibit differential expression, are preferentially released in extracellular vesicles, and are regulated by KRAB zinc-finger (KZNF) genes, which are broadly downregulated in mutant KRAS cells and lung adenocarcinomas in vivo. Moreover, mutant KRAS induces an intrinsic IFN-stimulated gene (ISG) signature that is often seen across many different cancers. Our results indicate that mutant KRAS remodels the repetitive noncoding transcriptome, demonstrating the broad scope of intracellular and extracellular RNAs regulated by this oncogenic signaling pathway.


Subject(s)
DNA Transposable Elements , Genes, ras , Cell Line, Tumor , DNA Transposable Elements/genetics , Humans , Immunity, Innate/genetics , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , RNA , Zinc
5.
Cell Rep ; 33(13): 108541, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33378675

ABSTRACT

Macrophages are critical effector cells of the immune system, and understanding genes involved in their viability and function is essential for gaining insights into immune system dysregulation during disease. We use a high-throughput, pooled-based CRISPR-Cas screening approach to identify essential genes required for macrophage viability. In addition, we target 3' UTRs to gain insights into previously unidentified cis-regulatory regions that control these essential genes. Next, using our recently generated nuclear factor κB (NF-κB) reporter line, we perform a fluorescence-activated cell sorting (FACS)-based high-throughput genetic screen and discover a number of previously unidentified positive and negative regulators of the NF-κB pathway. We unravel complexities of the TNF signaling cascade, showing that it can function in an autocrine manner in macrophages to negatively regulate the pathway. Utilizing a single complex library design, we are capable of interrogating various aspects of macrophage biology, thus generating a resource for future studies.


Subject(s)
Flow Cytometry/methods , High-Throughput Screening Assays/methods , Inflammation/genetics , Inflammation/metabolism , Macrophages/physiology , NF-kappa B/physiology , Tumor Necrosis Factor-alpha/physiology , 3' Untranslated Regions , Animals , CRISPR-Cas Systems , Cell Line , Cell Survival , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Expression Regulation , HEK293 Cells , Humans , Mice , RNA, Guide, Kinetoplastida/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL