Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39293447

ABSTRACT

The genome duplication program is affected by multiple factors in vivo, including developmental cues, genotoxic stress, and aging. Here, we monitored DNA replication initiation dynamics in regenerating livers of young and old mice after partial hepatectomy to investigate the impact of aging. In young mice, the origin firing sites were well defined; the majority were located 10-50 kb upstream or downstream of expressed genes, and their position on the genome was conserved in human cells. Old mice displayed the same replication initiation sites, but origin firing was inefficient and accompanied by a replication stress response. Inhibitors of the ATR checkpoint kinase fully restored origin firing efficiency in the old mice but at the expense of an inflammatory response and without significantly enhancing the fraction of hepatocytes entering the cell cycle. These findings unveil aging-dependent replication stress and a crucial role of ATR in mitigating the stress-associated inflammation, a hallmark of aging.

2.
Nature ; 628(8007): 433-441, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509368

ABSTRACT

An important advance in cancer therapy has been the development of poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of homologous recombination (HR)-deficient cancers1-6. PARP inhibitors trap PARPs on DNA. The trapped PARPs are thought to block replisome progression, leading to formation of DNA double-strand breaks that require HR for repair7. Here we show that PARP1 functions together with TIMELESS and TIPIN to protect the replisome in early S phase from transcription-replication conflicts. Furthermore, the synthetic lethality of PARP inhibitors with HR deficiency is due to an inability to repair DNA damage caused by transcription-replication conflicts, rather than by trapped PARPs. Along these lines, inhibiting transcription elongation in early S phase rendered HR-deficient cells resistant to PARP inhibitors and depleting PARP1 by small-interfering RNA was synthetic lethal with HR deficiency. Thus, inhibiting PARP1 enzymatic activity may suffice for treatment efficacy in HR-deficient settings.


Subject(s)
DNA Replication , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases , Transcription, Genetic , Humans , DNA Breaks, Double-Stranded , DNA Replication/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Recombinational DNA Repair , S Phase , Transcription, Genetic/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Poly (ADP-Ribose) Polymerase-1/metabolism
3.
Mol Cell ; 82(18): 3366-3381.e9, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36002000

ABSTRACT

Oncogene activation during tumorigenesis promotes DNA replication stress (RS), which subsequently drives the formation of cancer-associated chromosomal rearrangements. Many episodes of physiological RS likely arise due to conflicts between the DNA replication and transcription machineries operating simultaneously at the same loci. One role of the RAD51 recombinase in human cells is to protect replication forks undergoing RS. Here, we have identified a key role for RAD51 in preventing transcription-replication conflicts (TRCs) from triggering replication fork breakage. The genomic regions most affected by RAD51 deficiency are characterized by being replicated and transcribed in early S-phase and show significant overlap with loci prone to cancer-associated amplification. Consistent with a role for RAD51 in protecting against transcription-replication conflicts, many of the adverse effects of RAD51 depletion are ameliorated by inhibiting early S-phase transcription. We propose a model whereby RAD51 suppresses fork breakage and subsequent inadvertent amplification of genomic loci prone to experiencing TRCs.


Subject(s)
DNA Replication , Rad51 Recombinase , Chromosomes/metabolism , Humans , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , S Phase/genetics , Transcription, Genetic
4.
Mol Cell ; 82(18): 3382-3397.e7, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36002001

ABSTRACT

Aberrant replication causes cells lacking BRCA2 to enter mitosis with under-replicated DNA, which activates a repair mechanism known as mitotic DNA synthesis (MiDAS). Here, we identify genome-wide the sites where MiDAS reactions occur when BRCA2 is abrogated. High-resolution profiling revealed that these sites are different from MiDAS at aphidicolin-induced common fragile sites in that they map to genomic regions replicating in the early S-phase, which are close to early-firing replication origins, are highly transcribed, and display R-loop-forming potential. Both transcription inhibition in early S-phase and RNaseH1 overexpression reduced MiDAS in BRCA2-deficient cells, indicating that transcription-replication conflicts (TRCs) and R-loops are the source of MiDAS. Importantly, the MiDAS sites identified in BRCA2-deficient cells also represent hotspots for genomic rearrangements in BRCA2-mutated breast tumors. Thus, our work provides a mechanism for how tumor-predisposing BRCA2 inactivation links transcription-induced DNA damage with mitotic DNA repair to fuel the genomic instability characteristic of cancer cells.


Subject(s)
DNA Replication , Mitosis , Aphidicolin/pharmacology , BRCA2 Protein/genetics , Chromosome Fragile Sites/genetics , DNA/genetics , DNA Damage , Genomic Instability , Humans , Mitosis/genetics
5.
J Pathol ; 259(1): 10-20, 2023 01.
Article in English | MEDLINE | ID: mdl-36210634

ABSTRACT

Chromatin licensing and DNA replication factor 1 (CDT1), a protein of the pre-replicative complex, is essential for loading the minichromosome maintenance complex (MCM) helicases onto the origins of DNA replication. While several studies have shown that dysregulation of CDT1 expression causes re-replication and DNA damage in cell lines, and CDT1 is highly expressed in several human cancers, whether CDT1 deregulation is sufficient to enhance tumorigenesis in vivo is currently unclear. To delineate its role in vivo, we overexpressed Cdt1 in the mouse colon and induced carcinogenesis using azoxymethane/dextran sodium sulfate (AOM/DSS). Here, we show that mice overexpressing Cdt1 develop a significantly higher number of tumors with increased tumor size, and more severe dysplastic changes (high-grade dysplasia), compared with control mice under the same treatment. These tumors exhibited an increased growth rate, while cells overexpressing Cdt1 loaded greater amounts of Mcm2 onto chromatin, demonstrating origin overlicensing. Adenomas overexpressing Cdt1 showed activation of the DNA damage response (DDR), apoptosis, formation of micronuclei, and chromosome segregation errors, indicating that aberrant expression of Cdt1 results in increased genomic and chromosomal instability in vivo, favoring cancer development. In line with these results, high-level expression of CDT1 in human colorectal cancer tissue specimens and colorectal cancer cell lines correlated significantly with increased origin licensing, activation of the DDR, and microsatellite instability (MSI). © 2022 The Pathological Society of Great Britain and Ireland.


Subject(s)
Colorectal Neoplasms , DNA Replication , DNA-Binding Proteins , Animals , Humans , Mice , Carcinogenesis/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/genetics , DNA Damage , DNA-Binding Proteins/metabolism
6.
Nature ; 555(7694): 112-116, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29466339

ABSTRACT

Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer. However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC. Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.


Subject(s)
DNA Replication , G1 Phase/genetics , Genomic Instability/genetics , Neoplasms/genetics , Oncogenes/genetics , Replication Origin/genetics , S Phase/genetics , Cell Line, Tumor , Chromosome Breakpoints , Cohort Studies , Cyclin E/genetics , Cyclin E/metabolism , DNA/biosynthesis , DNA/genetics , DNA Breaks, Double-Stranded , DNA Replication/genetics , Female , Gene Expression Regulation, Neoplastic , Genes, myc/genetics , Humans , Oncogene Proteins/genetics , Transcription, Genetic/genetics , Translocation, Genetic/genetics
7.
Mol Cell ; 63(5): 877-83, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27524497

ABSTRACT

The Pold3 gene encodes a subunit of the Polδ DNA polymerase complex. Pold3 orthologs are not essential in Saccharomyces cerevisiae or chicken DT40 cells, but the Schizosaccharomyces pombe ortholog is essential. POLD3 also has a specialized role in the repair of broken replication forks, suggesting that POLD3 activity could be particularly relevant for cancer cells enduring high levels of DNA replication stress. We report here that POLD3 is essential for mouse development and is also required for viability in adult animals. Strikingly, even Pold3(+/-) mice were born at sub-Mendelian ratios, and, of those born, some presented hydrocephaly and had a reduced lifespan. In cells, POLD3 deficiency led to replication stress and cell death, which were aggravated by the expression of activated oncogenes. Finally, we show that Pold3 deletion destabilizes all members of the Polδ complex, explaining its major role in DNA replication and the severe impact of its deficiency.


Subject(s)
DNA Polymerase III/deficiency , DNA Replication , Haploinsufficiency , Hydrocephalus/genetics , Longevity/genetics , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Brain/growth & development , Brain/metabolism , Brain/pathology , Cell Death , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , DNA Damage , DNA Polymerase III/genetics , Gene Expression Regulation, Developmental , Histones/genetics , Histones/metabolism , Homozygote , Hydrocephalus/metabolism , Hydrocephalus/mortality , Hydrocephalus/pathology , Lung/growth & development , Lung/metabolism , Lung/pathology , Mice , Mice, Knockout , Phosphorylation , Survival Analysis
8.
Mol Cell ; 64(6): 1127-1134, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27984746

ABSTRACT

Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , Cyclin E/genetics , DNA Breaks, Double-Stranded , DNA/genetics , Osteosarcoma/genetics , Rad52 DNA Repair and Recombination Protein/genetics , Recombinational DNA Repair , Adenomatous Polyposis Coli Protein/deficiency , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin E/metabolism , DNA/metabolism , G1 Phase , Gene Expression , Genomic Instability , Humans , Mice , Mice, Knockout , Nocodazole/pharmacology , Osteosarcoma/metabolism , Osteosarcoma/mortality , Osteosarcoma/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rad52 DNA Repair and Recombination Protein/antagonists & inhibitors , Rad52 DNA Repair and Recombination Protein/metabolism , S Phase , Stress, Physiological , Survival Analysis
9.
Nat Rev Mol Cell Biol ; 11(3): 220-8, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20177397

ABSTRACT

Genomic instability is a characteristic of most cancers. In hereditary cancers, genomic instability results from mutations in DNA repair genes and drives cancer development, as predicted by the mutator hypothesis. In sporadic (non-hereditary) cancers the molecular basis of genomic instability remains unclear, but recent high-throughput sequencing studies suggest that mutations in DNA repair genes are infrequent before therapy, arguing against the mutator hypothesis for these cancers. Instead, the mutation patterns of the tumour suppressor TP53 (which encodes p53), ataxia telangiectasia mutated (ATM) and cyclin-dependent kinase inhibitor 2A (CDKN2A; which encodes p16INK4A and p14ARF) support the oncogene-induced DNA replication stress model, which attributes genomic instability and TP53 and ATM mutations to oncogene-induced DNA damage.


Subject(s)
Genomic Instability , Mutation , Neoplasms/genetics , Animals , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA Damage , DNA-Binding Proteins/genetics , Humans , Models, Biological , Protein Serine-Threonine Kinases/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics
11.
EMBO Rep ; 17(12): 1731-1737, 2016 12.
Article in English | MEDLINE | ID: mdl-27760777

ABSTRACT

Human malignancies overcome replicative senescence either by activating the reverse-transcriptase telomerase or by utilizing a homologous recombination-based mechanism, referred to as alternative lengthening of telomeres (ALT). In budding yeast, ALT exhibits features of break-induced replication (BIR), a repair pathway for one-ended DNA double-strand breaks (DSBs) that requires the non-essential subunit Pol32 of DNA polymerase delta and leads to conservative DNA replication. Here, we examined whether ALT in human cancers also exhibits features of BIR A telomeric fluorescence in situ hybridization protocol involving three consecutive staining steps revealed the presence of conservatively replicated telomeric DNA in telomerase-negative cancer cells. Furthermore, depletion of PolD3 or PolD4, two subunits of human DNA polymerase delta that are essential for BIR, reduced the frequency of conservatively replicated telomeric DNA ends and led to shorter telomeres and chromosome end-to-end fusions. Taken together, these results suggest that BIR is associated with conservative DNA replication in human cells and mediates ALT in cancer.


Subject(s)
DNA Repair , DNA Replication , Neoplasms/genetics , Telomere Homeostasis , DNA Breaks, Double-Stranded , DNA Polymerase III/deficiency , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , DNA Repair/genetics , DNA Replication/genetics , DNA-Directed DNA Polymerase/genetics , Homologous Recombination/genetics , Humans , In Situ Hybridization, Fluorescence , Saccharomyces cerevisiae Proteins/genetics , Telomerase/genetics , Telomerase/metabolism , Telomere Homeostasis/genetics , Telomere Shortening/genetics , Yeasts/genetics , Yeasts/physiology
12.
EMBO Rep ; 17(5): 769-79, 2016 05.
Article in English | MEDLINE | ID: mdl-26993089

ABSTRACT

Pioneering studies within the last few years have allowed the in vitro expansion of tissue-specific adult stem cells from a variety of endoderm-derived organs, including the stomach, small intestine, and colon. Expansion of these cells requires activation of the receptor Lgr5 by its ligand R-spondin 1 and is likely facilitated by the fact that in healthy adults the stem cells in these organs are highly proliferative. In many other adult organs, such as the liver, proliferating cells are normally not abundant in adulthood. However, upon injury, the liver has a strong regenerative potential that is accompanied by the emergence of Lgr5-positive stem cells; these cells can be isolated and expanded in vitro as organoids. In an effort to isolate stem cells from non-regenerating mouse livers, we discovered that healthy gallbladders are a rich source of stem/progenitor cells that can be propagated in culture as organoids for more than a year. Growth of these organoids was stimulated by R-spondin 1 and noggin, whereas in the absence of these growth factors, the organoids differentiated partially toward the hepatocyte fate. When transplanted under the liver capsule, gallbladder-derived organoids maintained their architecture for 2 weeks. Furthermore, single cells prepared from dissociated organoids and injected into the mesenteric vein populated the liver parenchyma of carbon tetrachloride-treated mice. Human gallbladders were also a source of organoid-forming stem cells. Thus, under specific growth conditions, stem cells can be isolated from healthy gallbladders, expanded almost indefinitely in vitro, and induced to differentiate toward the hepatocyte lineage.


Subject(s)
Carrier Proteins/metabolism , Gallbladder/cytology , Stem Cells/metabolism , Thrombospondins/metabolism , Animals , Biomarkers , Carrier Proteins/genetics , Carrier Proteins/pharmacology , Cell Differentiation/genetics , Cells, Cultured , Gene Expression Profiling , Humans , Liver/cytology , Mice , Mice, Transgenic , Organoids , Protein Kinase Inhibitors/pharmacology , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Receptors, Transforming Growth Factor beta/metabolism , Stem Cells/drug effects , Thrombospondins/genetics , Thrombospondins/pharmacology , Transcriptome
14.
EMBO J ; 30(11): 2167-76, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21522129

ABSTRACT

The p53 tumour suppressor gene, the most frequently mutated gene in human cancer, encodes a transcription factor that contains sequence-specific DNA binding and homo-tetramerization domains. Interestingly, the affinities of p53 for specific and non-specific DNA sites differ by only one order of magnitude, making it hard to understand how this protein recognizes its specific DNA targets in vivo. We describe here the structure of a p53 polypeptide containing both the DNA binding and oligomerization domains in complex with DNA. The structure reveals that sequence-specific DNA binding proceeds via an induced fit mechanism that involves a conformational switch in loop L1 of the p53 DNA binding domain. Analysis of loop L1 mutants demonstrated that the conformational switch allows DNA binding off-rates to be regulated independently of affinities. These results may explain the universal prevalence of conformational switching in sequence-specific DNA binding proteins and suggest that proteins like p53 rely more on differences in binding off-rates, than on differences in affinities, to recognize their specific DNA sites.


Subject(s)
DNA/metabolism , Protein Conformation , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism , Binding Sites , Crystallography, X-Ray , DNA Mutational Analysis , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Fluorescence Polarization , Humans , Models, Molecular , Mutagenesis, Site-Directed , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Binding
15.
PLoS Genet ; 8(2): e1002484, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22346760

ABSTRACT

Shifts between epigenetic states of transcriptional activity are typically correlated with changes in epigenetic marks. However, exceptions to this rule suggest the existence of additional, as yet uncharacterized, layers of epigenetic regulation. MOM1, a protein of 2,001 amino acids that acts as a transcriptional silencer, represents such an exception. Here we define the 82 amino acid domain called CMM2 (Conserved MOM1 Motif 2) as a minimal MOM1 fragment capable of transcriptional regulation. As determined by X-ray crystallography, this motif folds into an unusual hendecad-based coiled-coil. Structure-based mutagenesis followed by transgenic complementation tests in plants demonstrate that CMM2 and its dimerization are effective for transcriptional suppression at chromosomal loci co-regulated by MOM1 and the siRNA pathway but not at loci controlled by MOM1 in an siRNA-independent fashion. These results reveal a surprising separation of epigenetic activities that enable the single, large MOM1 protein to coordinate cooperating mechanisms of epigenetic regulation.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis/chemistry , Arabidopsis/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation, Plant , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription, Genetic , ATPases Associated with Diverse Cellular Activities , Amino Acid Sequence , Crystallography, X-Ray , Gene Silencing , Molecular Sequence Data , Mutagenesis , Plants, Genetically Modified , Protein Conformation , Protein Folding , Protein Multimerization , Protein Structure, Tertiary/genetics , RNA, Small Interfering/genetics , Structure-Activity Relationship
16.
EMBO J ; 29(21): 3723-32, 2010 Nov 03.
Article in English | MEDLINE | ID: mdl-20871591

ABSTRACT

TopBP1 is a checkpoint protein that colocalizes with ATR at sites of DNA replication stress. In this study, we show that TopBP1 also colocalizes with 53BP1 at sites of DNA double-strand breaks (DSBs), but only in the G1-phase of the cell cycle. Recruitment of TopBP1 to sites of DNA replication stress was dependent on BRCT domains 1-2 and 7-8, whereas recruitment to sites of DNA DSBs was dependent on BRCT domains 1-2 and 4-5. The BRCT domains 4-5 interacted with 53BP1 and recruitment of TopBP1 to sites of DNA DSBs in G1 was dependent on 53BP1. As TopBP1 contains a domain important for ATR activation, we examined whether it contributes to the G1 cell cycle checkpoint. By monitoring the entry of irradiated G1 cells into S-phase, we observed a checkpoint defect after siRNA-mediated depletion of TopBP1, 53BP1 or ATM. Thus, TopBP1 may mediate the checkpoint function of 53BP1 in G1.


Subject(s)
Bone Neoplasms/genetics , Carrier Proteins/physiology , DNA Breaks, Double-Stranded , DNA-Binding Proteins/physiology , G1 Phase/genetics , Genes, cdc/physiology , Intracellular Signaling Peptides and Proteins/physiology , Nuclear Proteins/physiology , Blotting, Western , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , DNA Repair , DNA Replication , Humans , Immunoprecipitation , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/pathology , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Tumor Cells, Cultured , Tumor Suppressor p53-Binding Protein 1
17.
Sci Rep ; 14(1): 7708, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565932

ABSTRACT

Human RECQL4, a member of the RecQ helicase family, plays a role in maintaining genomic stability, but its precise function remains unclear. The N-terminus of RECQL4 has similarity to Sld2, a protein required for the firing of DNA replication origins in budding yeast. Consistent with this sequence similarity, the Xenopus laevis homolog of RECQL4 has been implicated in initiating DNA replication in egg extracts. To determine whether human RECQL4 is required for firing of DNA replication origins, we generated cells in which both RECQL4 alleles were targeted, resulting in either lack of protein expression (knock-out; KO) or expression of a full-length, mutant protein lacking helicase activity (helicase-dead; HD). Interestingly, both the RECQL4 KO and HD cells were viable and exhibited essentially identical origin firing profiles as the parental cells. Analysis of the rate of fork progression revealed increased rates in the RECQL4 KO cells, which might be indicative of decreased origin firing efficiency. Our results are consistent with human RECQL4 having a less critical role in firing of DNA replication origins, than its budding yeast homolog Sld2.


Subject(s)
RecQ Helicases , Replication Origin , Animals , Humans , RecQ Helicases/genetics , RecQ Helicases/metabolism , DNA Replication , Xenopus laevis/metabolism , DNA/metabolism
18.
Sci Rep ; 14(1): 1117, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212351

ABSTRACT

DNA polymerase eta (Polη) is the only translesion synthesis polymerase capable of error-free bypass of UV-induced cyclobutane pyrimidine dimers. A deficiency in Polη function is associated with the human disease Xeroderma pigmentosum variant (XPV). We hereby report the case of a 60-year-old woman known for XPV and carrying a Polη Thr191Pro variant in homozygosity. We further characterize the variant in vitro and in vivo, providing molecular evidence that the substitution abrogates polymerase activity and results in UV sensitivity through deficient damage bypass. This is the first functional molecular characterization of a missense variant of Polη, whose reported pathogenic variants have thus far been loss of function truncation or frameshift mutations. Our work allows the upgrading of Polη Thr191Pro from 'variant of uncertain significance' to 'likely pathogenic mutant', bearing direct impact on molecular diagnosis and genetic counseling. Furthermore, we have established a robust experimental approach that will allow a precise molecular analysis of further missense mutations possibly linked to XPV. Finally, it provides insight into critical Polη residues that may be targeted to develop small molecule inhibitors for cancer therapeutics.


Subject(s)
Xeroderma Pigmentosum , Humans , Middle Aged , DNA Damage , Mutation, Missense , Proline/genetics , Pyrimidine Dimers , Ultraviolet Rays , Xeroderma Pigmentosum/genetics , Xeroderma Pigmentosum/pathology , Female
19.
EMBO J ; 28(20): 3067-73, 2009 Oct 21.
Article in English | MEDLINE | ID: mdl-19779456

ABSTRACT

Phosphatidylinositol-3 kinase-related kinases (PIKKs) comprise a family of protein kinases that respond to various stresses, including DNA damage, blocks in DNA replication, availability of nutrients and errors in mRNA splicing. PIKKs are characterized by the presence of a conserved kinase domain (KD), whose activity is regulated by two C-terminal regions, referred to as PIKK-regulatory domain (PRD) and FRAP-ATM-TRRAP-C-terminal (FATC), respectively. Here, we review functional and structural data that implicate the PRD and FATC domains in regulation of PIKK activity, drawing parallels to phosphatidylinositol-3 kinases (PI3K), lipid kinases that have sequence similarity to PIKKs. The PI3K C-terminus, which we propose to be equivalent to the PRD and FATC domains of PIKKs, is in close proximity to the activation loop of the KD, suggesting that in PIKKs, the PRD and FATC domains may regulate kinase activity by targeting the activation loop.


Subject(s)
Gene Expression Regulation, Enzymologic , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/physiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/physiology , Humans , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/genetics , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/physiology , Protein Structure, Tertiary , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/physiology
20.
STAR Protoc ; 4(1): 101970, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36598851

ABSTRACT

Cells experiencing DNA replication stress enter mitosis with under-replicated DNA, which activates a repair mechanism known as mitotic DNA synthesis (MiDAS). Here we describe a protocol to identify at genome wide and at high resolution the genomic sites where MiDAS occurs in cells exposed to aphidicolin. We use EdU incorporation to label nascent DNA in mitotic cells, followed by isolation of the EdU-labeled DNA and next-generation sequencing. For complete details on the use and execution of this protocol, please refer to Groelly et al. (2022)1 and Macheret et al. (2020).2.


Subject(s)
DNA Replication , DNA , DNA Replication/genetics , DNA/genetics , DNA/metabolism , Cells, Cultured , Mitosis/genetics , DNA Repair
SELECTION OF CITATIONS
SEARCH DETAIL