Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Am J Physiol Regul Integr Comp Physiol ; 317(1): R160-R168, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31091156

ABSTRACT

Sepsis is a major clinical challenge, with therapy limited to supportive interventions. Therefore, the search for novel remedial approaches is of great importance. We addressed whether hyperbaric oxygen therapy (HBOT) could improve the outcome of sepsis using an acute experimental mouse model. Sepsis was induced in male CD-1 mice by cecal ligation and puncture (CLP) tailored to result in 80-90% mortality within 72 h of the insult. After CLP, mice were randomized into two groups receiving HBOT or not at different times after the initial insult or subjected to multiple HBOT treatments. HBOT conditions were 98% oxygen pressurized to 2.4 atmospheres for 1 h. HBOT within 1 h after CLP resulted in 52% survival in comparison with mice that did not receive the treatment (13% survival). Multiple HBOT at 1 and 6 h or 1, 6, and 21 h displayed an increase in survival of >50%, but they were not significantly different from a single treatment after 1 h of CLP. Treatments at 6 or 21 h after CLP, excluding the 1 h of treatment, did not show any protective effect. Early HBO treatment did not modify bacterial counts after CLP, but it was associated with decreased expression of TNF-α, IL-6, and IL-10 expression in the liver within 3 h after CLP. The decrease of cytokine expression was reproduced in cultured macrophages after exposure to HBOT. Early HBOT could be of benefit in the treatment of sepsis, and the protective mechanism may be related to a reduction in the systemic inflammatory response.


Subject(s)
Disease Models, Animal , Hyperbaric Oxygenation , Sepsis/therapy , Animals , Cecum/injuries , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation , Ligation , Lipopolysaccharides/toxicity , Macrophages/metabolism , Male , Mice , Mitochondria/metabolism , Oxygen Consumption , Punctures
2.
World J Surg ; 42(6): 1617-1628, 2018 06.
Article in English | MEDLINE | ID: mdl-29234849

ABSTRACT

BACKGROUND: Non-communicable diseases (NCDs), such as atherosclerosis and cancers, are a leading cause of death worldwide. An important, yet poorly explained epidemiological feature of NCDs is their low incidence in under developed areas of low-income countries and rising rates in urban areas. METHODS: With the goal of better understanding how urbanization increases the incidence of NCDs, we provide an overview of the urbanization process in sub-Saharan Africa, discuss gene expression differences between rural and urban populations, and review the current NCD determinant model. We conclude by identifying research priorities. RESULTS: Declining rates of chronic and recurrent infection are the hallmark of urbanization in sub-Saharan Africa. Gene profiling studies show urbanization results in complex molecular changes, with almost one-third of the peripheral blood leukocyte transcriptome altered. The current NCD determinant model could be improved by including a possible effect from declining rates of infection and expanding the spectrum of diseases that increase with urbanization. CONCLUSIONS: Urbanization in sub-Saharan Africa provides a unique opportunity to investigate the mechanism by which the environment influences disease epidemiology. Research priorities include: (1) studies to define the relationship between infection and risk factors for NCDs, (2) explaining the observed differences in the inflammatory response between rural and urban populations, and (3) identification of animal models that simulate the biological changes that occurs with urbanization. A better understanding of the biological changes that occur with urbanization could lead to new prevention and treatment strategies for some of the most common surgical diseases in high-income countries.


Subject(s)
Developing Countries/statistics & numerical data , Infections/epidemiology , Noncommunicable Diseases/epidemiology , Africa South of the Sahara/epidemiology , Child , Chronic Disease/epidemiology , Gene Expression , Humans , Incidence , Infections/etiology , Infections/genetics , Poverty , Recurrence , Risk Factors , Rural Population , Urban Population , Urbanization
3.
Infect Immun ; 85(12)2017 12.
Article in English | MEDLINE | ID: mdl-28947644

ABSTRACT

Sepsis remains a major health problem at the levels of mortality, morbidity, and economic burden to the health care system, a condition that is aggravated by the development of secondary conditions such as septic shock and multiple-organ failure. Our current understanding of the etiology of human sepsis has advanced, at least in part, due to the use of experimental animal models, particularly the model of cecum ligation and puncture (CLP). Antibiotic treatment has been commonly used in this model to closely mirror the treatment of human septic patients. However, whether their use may obscure the elucidation of the cellular and molecular mechanisms involved in the septic response is questionable. The objective of the present study was to determine the effect of antibiotic treatment in the outcome of a fulminant model of CLP. Various dosing strategies were used for the administration of imipenem, which has broad-spectrum coverage of enteric bacteria. No statistically significant differences in the survival of mice were observed between the different antibiotic dosing strategies and no treatment, suggesting that live bacteria may not be the only factor inducing septic shock. To further investigate this hypothesis, mice were challenged with sterilized or unsterilized cecal contents. We found that exposure of mice to sterilized cecal contents also resulted in a high mortality rate. Therefore, it is possible that bacterial debris, apart from bacterial proliferation, triggers a septic response and contributes to mortality in this model, suggesting that additional factors are involved in the development of septic shock.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Imipenem/administration & dosage , Sepsis/drug therapy , Animals , Disease Models, Animal , Mice , Survival Analysis , Treatment Outcome
4.
Sci Rep ; 12(1): 19764, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396724

ABSTRACT

Appendicoliths are commonly found obstructing the lumen of the appendix at the time of appendectomy. To identify factors that might contribute to their formation we investigated the composition of appendicoliths using laser ablation inductively coupled plasma mass spectroscopy, gas chromatography, polarized light microscopy, X-ray crystallography and protein mass spectroscopy. Forty-eight elements, 32 fatty acids and 109 human proteins were identified within the appendicoliths. The most common elements found in appendicoliths are calcium and phosphorus, 11.0 ± 6.0 and 8.2 ± 4.2% weight, respectively. Palmitic acid (29.7%) and stearate (21.3%) are the most common fatty acids. Some stearate is found in crystalline form-identifiable by polarized light microscopy and confirmable by X-ray crystallography. Appendicoliths have an increased ratio of omega-6 to omega-3 fatty acids (ratio 22:1). Analysis of 16 proteins common to the appendicoliths analyzed showed antioxidant activity and neutrophil functions (e.g. activation and degranulation) to be the most highly enriched pathways. Considered together, these preliminary findings suggest oxidative stress may have a role in appendicolith formation. Further research is needed to determine how dietary factors such as omega-6 fatty acids and food additives, redox-active metals and the intestinal microbiome interact with genetic factors to predispose to appendicolith formation.


Subject(s)
Appendix , Fatty Acids , Humans , Stearates , Appendectomy , Chromatography, Gas
6.
Article in English | MEDLINE | ID: mdl-33883208

ABSTRACT

Visceral myopathies (VMs) encompass a spectrum of disorders characterized by chronic disruption of gastrointestinal function, with or without urinary system involvement. Pathogenic missense variation in smooth muscle γ-actin gene (ACTG2) is associated with autosomal dominant VM. Whole-genome sequencing of an infant presenting with chronic intestinal pseudo-obstruction revealed a homozygous 187 bp (c.589_613 + 163del188) deletion spanning the exon 6-intron 6 boundary within ACTG2 The patient's clinical course was marked by prolonged hospitalizations, multiple surgeries, and intermittent total parenteral nutrition dependence. This case supports the emerging understanding of allelic heterogeneity in ACTG2-related VM, in which both biallelic and monoallelic variants in ACTG2 are associated with gastrointestinal dysfunction of similar severity and overlapped clinical presentation. Moreover, it illustrates the clinical utility of rapid whole-genome sequencing, which can comprehensively and precisely detect different types of genomic variants including small deletions, leading to guidance of clinical care decisions.


Subject(s)
Actins/genetics , Genotype , Intestinal Pseudo-Obstruction/diagnosis , Intestinal Pseudo-Obstruction/genetics , Humans , Ileus , Infant , Intestinal Pseudo-Obstruction/pathology , Male , Pedigree , Treatment Outcome , Whole Genome Sequencing
7.
J Pediatr Surg ; 53(4): 752-757, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29555324

ABSTRACT

PURPOSE: Serum D-dimer has been proposed as a biomarker to aid in the diagnosis of pediatric traumatic brain injury (TBI). We investigated the accuracy of D-dimer in predicting the absence of TBI and evaluated the degree by which D-dimer could limit unnecessary computed tomography scans of the head (CTH). METHODS: Retrospective review of patients with suspected TBI from 2011 to 2013 who underwent evaluation with CTH and quantitative D-dimer. D-dimer levels were compared among patients with clinically-important TBI (ciTBI), TBI, isolated skull fracture and no injury. RESULTS: Of the 663 patients evaluated for suspected TBI, ciTBI was identified in 116 (17.5%), TBI in 77 (11.6%), skull fracture in 61 (9.2%) and no head injury in 409 (61.7%). Patients with no head injury had significantly lower D-dimer values (1531±1791pg/µL) compared to those with skull fracture, TBI and ciTBI (2504±1769, 2870±1633 and 4059±1287pg/µL, respectively, p<0.005). Using a D-dimer value <750pg/µL as a negative screen, no ciTBIs would be missed and 209 CTHs avoided (39.7% of total). CONCLUSION: Low plasma D-dimer predicts the absence of ciTBI for pediatric patient with suspected TBI. Incorporating D-dimer into current diagnostic algorithms may significantly limit the number of unnecessary CTHs performed in this population. TYPE OF STUDY: Study of diagnostic test. LEVEL OF EVIDENCE: I.


Subject(s)
Craniocerebral Trauma/diagnostic imaging , Fibrin Fibrinogen Degradation Products/metabolism , Tomography, X-Ray Computed , Adolescent , Biomarkers/blood , Child , Child, Preschool , Craniocerebral Trauma/blood , Female , Humans , Infant , Infant, Newborn , Male , Retrospective Studies , Skull Fractures/blood , Skull Fractures/diagnostic imaging , Trauma Severity Indices
SELECTION OF CITATIONS
SEARCH DETAIL