Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 110(6): 998-1007, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37207645

ABSTRACT

While common obesity accounts for an increasing global health burden, its monogenic forms have taught us underlying mechanisms via more than 20 single-gene disorders. Among these, the most common mechanism is central nervous system dysregulation of food intake and satiety, often accompanied by neurodevelopmental delay (NDD) and autism spectrum disorder. In a family with syndromic obesity, we identified a monoallelic truncating variant in POU3F2 (alias BRN2) encoding a neural transcription factor, which has previously been suggested as a driver of obesity and NDD in individuals with the 6q16.1 deletion. In an international collaboration, we identified ultra-rare truncating and missense variants in another ten individuals sharing autism spectrum disorder, NDD, and adolescent-onset obesity. Affected individuals presented with low-to-normal birth weight and infantile feeding difficulties but developed insulin resistance and hyperphagia during childhood. Except for a variant leading to early truncation of the protein, identified variants showed adequate nuclear translocation but overall disturbed DNA-binding ability and promotor activation. In a cohort with common non-syndromic obesity, we independently observed a negative correlation of POU3F2 gene expression with BMI, suggesting a role beyond monogenic obesity. In summary, we propose deleterious intragenic variants of POU3F2 to cause transcriptional dysregulation associated with hyperphagic obesity of adolescent onset with variable NDD.


Subject(s)
Autism Spectrum Disorder , Neurodevelopmental Disorders , Prader-Willi Syndrome , Adolescent , Humans , Autism Spectrum Disorder/genetics , Hyperphagia/genetics , Hyperphagia/complications , Neurodevelopmental Disorders/genetics , Obesity/complications , Prader-Willi Syndrome/complications , Prader-Willi Syndrome/genetics , Proteins
2.
Gastroenterology ; 166(5): 902-914, 2024 05.
Article in English | MEDLINE | ID: mdl-38101549

ABSTRACT

BACKGROUND & AIMS: Autosomal dominant polycystic liver disease is a rare condition with a female preponderance, based mainly on pathogenic variants in 2 genes, PRKCSH and SEC63. Clinically, autosomal dominant polycystic liver disease is characterized by vast heterogeneity, ranging from asymptomatic to highly symptomatic hepatomegaly. To date, little is known about the prediction of disease progression at early stages, hindering clinical management, genetic counseling, and the design of randomized controlled trials. To improve disease prognostication, we built a consortium of European and US centers to recruit the largest cohort of patients with PRKCSH and SEC63 liver disease. METHODS: We analyzed an international multicenter cohort of 265 patients with autosomal dominant polycystic liver disease harboring pathogenic variants in PRKCSH or SEC63 for genotype-phenotype correlations, including normalized age-adjusted total liver volumes and polycystic liver disease-related hospitalization (liver event) as primary clinical end points. RESULTS: Classifying individual total liver volumes into predefined progression groups yielded predictive risk discrimination for future liver events independent of sex and underlying genetic defects. In addition, disease severity, defined by age at first liver event, was considerably more pronounced in female patients and patients with PRKCSH variants than in those with SEC63 variants. A newly developed sex-gene score was effective in distinguishing mild, moderate, and severe disease, in addition to imaging-based prognostication. CONCLUSIONS: Both imaging and clinical genetic scoring have the potential to inform patients about the risk of developing symptomatic disease throughout their lives. The combination of female sex, germline PRKCSH alteration, and rapid total liver volume progression is associated with the greatest odds of polycystic liver disease-related hospitalization.


Subject(s)
Hospitalization , Liver Diseases , Adult , Female , Humans , Male , Middle Aged , Calcium-Binding Proteins , Cysts/genetics , Cysts/diagnostic imaging , Cysts/pathology , Disease Progression , Europe , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Glucosidases/genetics , Hepatomegaly/genetics , Hepatomegaly/diagnostic imaging , Hospitalization/statistics & numerical data , Liver/pathology , Liver/diagnostic imaging , Liver Diseases/genetics , Liver Diseases/pathology , Liver Diseases/diagnostic imaging , Molecular Chaperones , Organ Size , Prognosis , Risk Assessment , Risk Factors , RNA-Binding Proteins , Severity of Illness Index , Sex Factors , United States/epidemiology
3.
Curr Opin Nephrol Hypertens ; 33(2): 231-237, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38240263

ABSTRACT

PURPOSE OF REVIEW: We aimed to critically evaluate how the establishment of genotype-based treatment for cystinuria has been hampered due to the large number of variants of unknown significance (VUS) within the disease causing genes as well as challenges in accessing a large enough sample size for systematic analysis of endpoint parameters that truly reflect disease severity. This review further discusses how to overcome these hurdles with the establishment of a cystinuria-specific refinement of the current American College of Medical Genetics and Genomics (ACMG)-criteria of variant interpretation. RECENT FINDINGS: Novel tools such as AlphaMissense combined with the establishment of a refined ACMG criterion will play a significant role in classifying VUS within the responsible disease genes SLC3A1 (rBAT) and SLC7A9 (BAT1). This will also be essential in elucidating the role of promising candidate genes, such as SLC7A13 (AGT1), which have been derived from murine model systems and still need further research to determine if they are involved in human cystinuria. SUMMARY: Cystinuria was one of the first disorders to receive a gene-based classification, nonetheless, the clinically actionable implications of genetic diagnostics is still minor. This is due to poorly characterized genotype-phenotype correlations which results in a lack of individualized (genotype-) based management and metaphylaxis.


Subject(s)
Cystinuria , Humans , Animals , Mice , Cystinuria/diagnosis , Cystinuria/genetics , Cystinuria/therapy , Genotype , Mutation
4.
Kidney Int ; 104(5): 882-885, 2023 11.
Article in English | MEDLINE | ID: mdl-37863636

ABSTRACT

Urinary stone disease is based on gene-environment interaction with an almost 50% heritability. Despite all efforts from exome-sequencing and genome-wide association studies, the genetic factors making up for observed heritability have been incompletely characterized. The study by Sadeghi-Alavijeh et al. leverages the invaluable resources of the 100,000 Genomes Project and the UK Biobank to identify heterozygous rare variants in the phosphate transporter SLC34A3 as a significant factor of urinary stone disease, challenging the traditional concept of Mendelian inheritance.


Subject(s)
Urinary Calculi , Urolithiasis , Urologic Diseases , Humans , Genetic Predisposition to Disease , Genome-Wide Association Study , Gene-Environment Interaction , Urinary Calculi/genetics , Urolithiasis/genetics
5.
Genet Med ; 25(3): 100351, 2023 03.
Article in English | MEDLINE | ID: mdl-36571463

ABSTRACT

PURPOSE: Nephrolithiasis (NL) affects 1 in 11 individuals worldwide, leading to significant patient morbidity. NL is associated with nephrocalcinosis (NC), a risk factor for chronic kidney disease. Causative genetic variants are detected in 11% to 28% of NL and/or NC, suggesting that additional NL/NC-associated genetic loci await discovery. Therefore, we employed genomic approaches to discover novel genetic forms of NL/NC. METHODS: Exome sequencing and directed sequencing of the OXGR1 locus were performed in a worldwide NL/NC cohort. Putatively deleterious, rare OXGR1 variants were functionally characterized. RESULTS: Exome sequencing revealed a heterozygous OXGR1 missense variant (c.371T>G, p.L124R) cosegregating with calcium oxalate NL and/or NC disease in an autosomal dominant inheritance pattern within a multigenerational family with 5 affected individuals. OXGR1 encodes 2-oxoglutarate (α-ketoglutarate [AKG]) receptor 1 in the distal nephron. In response to its ligand AKG, OXGR1 stimulates the chloride-bicarbonate exchanger, pendrin, which also regulates transepithelial calcium transport in cortical connecting tubules. Strong amino acid conservation in orthologs and paralogs, severe in silico prediction scores, and extreme rarity in exome population databases suggested that the variant was deleterious. Interrogation of the OXGR1 locus in 1107 additional NL/NC families identified 5 additional deleterious dominant variants in 5 families with calcium oxalate NL/NC. Rare, potentially deleterious OXGR1 variants were enriched in patients with NL/NC compared with Exome Aggregation Consortium controls (χ2 = 7.117, P = .0076). Wild-type OXGR1-expressing Xenopus oocytes exhibited AKG-responsive Ca2+ uptake. Of 5 NL/NC-associated missense variants, 5 revealed impaired AKG-dependent Ca2+ uptake, demonstrating loss of function. CONCLUSION: Rare, dominant loss-of-function OXGR1 variants are associated with recurrent calcium oxalate NL/NC disease.


Subject(s)
Nephrolithiasis , Receptors, Purinergic P2 , Humans , Calcium Oxalate , Nephrolithiasis/genetics , Mutation, Missense/genetics , Sulfate Transporters/genetics , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2/metabolism
6.
J Am Soc Nephrol ; 33(4): 699-717, 2022 04.
Article in English | MEDLINE | ID: mdl-35031570

ABSTRACT

BACKGROUND: The tight junction proteins claudin-2 and claudin-10a form paracellular cation and anion channels, respectively, and are expressed in the proximal tubule. However, the physiologic role of claudin-10a in the kidney has been unclear. METHODS: To investigate the physiologic role of claudin-10a, we generated claudin-10a-deficient mice, confirmed successful knockout by Southern blot, Western blot, and immunofluorescence staining, and analyzed urine and serum of knockout and wild-type animals. We also used electrophysiologic studies to investigate the functionality of isolated proximal tubules, and studied compensatory regulation by pharmacologic intervention, RNA sequencing analysis, Western blot, immunofluorescence staining, and respirometry. RESULTS: Mice deficient in claudin-10a were fertile and without overt phenotypes. On knockout, claudin-10a was replaced by claudin-2 in all proximal tubule segments. Electrophysiology showed conversion from paracellular anion preference to cation preference and a loss of paracellular Cl- over HCO3- preference. As a result, there was tubular retention of calcium and magnesium, higher urine pH, and mild hypermagnesemia. A comparison with other urine and serum parameters under control conditions and sequential pharmacologic transport inhibition, and unchanged fractional lithium excretion, suggested compensative measures in proximal and distal tubular segments. Changes in proximal tubular oxygen handling and differential expression of genes regulating fatty acid metabolism indicated proximal tubular adaptation. Western blot and immunofluorescence revealed alterations in distal tubular transport. CONCLUSIONS: Claudin-10a is the major paracellular anion channel in the proximal tubule and its deletion causes calcium and magnesium hyper-reabsorption by claudin-2 redistribution. Transcellular transport in proximal and distal segments and proximal tubular metabolic adaptation compensate for loss of paracellular anion permeability.


Subject(s)
Claudin-2 , Claudins/metabolism , Animals , Cations/metabolism , Kidney Tubules, Proximal/metabolism , Mice , Permeability , Tight Junctions/physiology
7.
Am J Med Genet C Semin Med Genet ; 190(3): 279-288, 2022 09.
Article in English | MEDLINE | ID: mdl-35923129

ABSTRACT

Kidney stone disease (KSD) is a prevalent condition associated with high morbidity, frequent recurrence, and progression to chronic kidney disease (CKD). The etiology is multifactorial, depending on environmental and genetic factors. Although monogenic KSD is frequent in children, unbiased prevalence data of heritable forms in adults is scarce. Within 2 years of recruitment, all patients hospitalized for urological kidney stone intervention at our center were consecutively enrolled for targeted next generation sequencing (tNGS). Additionally, clinical and metabolic assessments were performed for genotype-phenotype analyses. The cohort comprised 155 (66%) males and 81 (34%) females, with a mean age at first stone of 47 years (4-86). The diagnostic yield of tNGS was 6.8% (16/236), with cystinuria (SLC3A1, SLC7A9), distal renal tubular acidosis (SLC4A1), and renal phosphate wasting (SLC34A1, SLC9A3R1) as underlying hereditary disorders. While metabolic syndrome traits were associated with late-onset KSD, hereditary KSD was associated with increased disease severity in terms of early-onset, frequent recurrence, mildly impaired kidney function, and common bilateral affection. By employing systematic genetic analysis to a less biased cohort of common adult kidney stone formers, we demonstrate its diagnostic value for establishing the underlying disorder in a distinct proportion. Factors determining pretest probability include age at first stone (<40 years), frequent recurrence, mild CKD, and bilateral KSD.


Subject(s)
Kidney Calculi , Renal Insufficiency, Chronic , Male , Female , Humans , Kidney Calculi/genetics , Kidney Calculi/diagnosis , Genetic Testing , Phenotype , Probability
8.
Kidney Int ; 101(5): 1039-1053, 2022 05.
Article in English | MEDLINE | ID: mdl-35227688

ABSTRACT

Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most common cause of chronic kidney failure in children. Despite growing knowledge of the genetic causes of CAKUT, the majority of cases remain etiologically unsolved. Genetic alterations in roundabout guidance receptor 1 (ROBO1) have been associated with neuronal and cardiac developmental defects in living individuals. Although Slit-Robo signaling is pivotal for kidney development, diagnostic ROBO1 variants have not been reported in viable CAKUT to date. By next-generation-sequencing methods, we identified six unrelated individuals and two non-viable fetuses with biallelic truncating or combined missense and truncating variants in ROBO1. Kidney and genitourinary manifestation included unilateral or bilateral kidney agenesis, vesicoureteral junction obstruction, vesicoureteral reflux, posterior urethral valve, genital malformation, and increased kidney echogenicity. Further clinical characteristics were remarkably heterogeneous, including neurodevelopmental defects, intellectual impairment, cerebral malformations, eye anomalies, and cardiac defects. By in silico analysis, we determined the functional significance of identified missense variants and observed absence of kidney ROBO1 expression in both human and murine mutant tissues. While its expression in multiple tissues may explain heterogeneous organ involvement, variability of the kidney disease suggests gene dosage effects due to a combination of null alleles with mild hypomorphic alleles. Thus, comprehensive genetic analysis in CAKUT should include ROBO1 as a new cause of recessively inherited disease. Hence, in patients with already established ROBO1-associated cardiac or neuronal disorders, screening for kidney involvement is indicated.


Subject(s)
Nerve Tissue Proteins/genetics , Receptors, Immunologic/genetics , Urinary Tract , Urogenital Abnormalities , Vesico-Ureteral Reflux , Animals , Child , Female , Humans , Kidney/pathology , Male , Mice , Urinary Tract/pathology , Urogenital Abnormalities/diagnosis , Urogenital Abnormalities/genetics , Vesico-Ureteral Reflux/diagnosis , Roundabout Proteins
9.
Am J Hum Genet ; 104(1): 45-54, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30609407

ABSTRACT

Nephronophthisis-related ciliopathies (NPHP-RCs) are a group of inherited diseases that are associated with defects in primary cilium structure and function. To identify genes mutated in NPHP-RC, we performed homozygosity mapping and whole-exome sequencing for >100 individuals, some of whom were single affected individuals born to consanguineous parents and some of whom were siblings of indexes who were also affected by NPHP-RC. We then performed high-throughput exon sequencing in a worldwide cohort of 800 additional families affected by NPHP-RC. We identified two ADAMTS9 mutations (c.4575_4576del [p.Gln1525Hisfs∗60] and c.194C>G [p.Thr65Arg]) that appear to cause NPHP-RC. Although ADAMTS9 is known to be a secreted extracellular metalloproteinase, we found that ADAMTS9 localized near the basal bodies of primary cilia in the cytoplasm. Heterologously expressed wild-type ADAMTS9, in contrast to mutant proteins detected in individuals with NPHP-RC, localized to the vicinity of the basal body. Loss of ADAMTS9 resulted in shortened cilia and defective sonic hedgehog signaling. Knockout of Adamts9 in IMCD3 cells, followed by spheroid induction, resulted in defective lumen formation, which was rescued by an overexpression of wild-type, but not of mutant, ADAMTS9. Knockdown of adamts9 in zebrafish recapitulated NPHP-RC phenotypes, including renal cysts and hydrocephalus. These findings suggest that the identified mutations in ADAMTS9 cause NPHP-RC and that ADAMTS9 is required for the formation and function of primary cilia.


Subject(s)
ADAMTS9 Protein/genetics , Ciliopathies/genetics , Mutation , Polycystic Kidney Diseases/genetics , ADAMTS9 Protein/metabolism , Animals , Cilia/pathology , Ciliopathies/pathology , Female , Humans , Male , Phenotype , Polycystic Kidney Diseases/pathology , Spheroids, Cellular , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
10.
Kidney Int ; 99(1): 48-58, 2021 01.
Article in English | MEDLINE | ID: mdl-32918941

ABSTRACT

Cystinuria (OMIM 220100) is an autosomal recessive hereditary disorder in which high urinary cystine excretion leads to the formation of cystine stones because of the low solubility of cystine at normal urinary pH. We developed clinical practice recommendation for diagnosis, surgical and medical treatment, and follow-up of patients with cystinuria. Elaboration of these clinical practice recommendations spanned from June 2018 to December 2019 with a consensus conference in January 2019. Selected topic areas were chosen by the co-chairs of the conference. Working groups focusing on specific topics were formed. Group members performed systematic literature review using MEDLINE, drafted the statements, and discussed them. They included geneticists, medical biochemists, pediatric and adult nephrologists, pediatric and adult urologists experts in cystinuria, and the Metabolic Nephropathy Joint Working Group of the European Reference Network for Rare Kidney Diseases (ERKNet) and eUROGEN members. Overall 20 statements were produced to provide guidance on diagnosis, genetic analysis, imaging techniques, surgical treatment (indication and modalities), conservative treatment (hydration, dietetic, alkalinization, and cystine-binding drugs), follow-up, self-monitoring, complications (renal failure and hypertension), and impact on quality of life. Because of the rarity of the disease and the poor level of evidence in the literature, these statements could not be graded. This clinical practice recommendation provides guidance on all aspects of the management of both adults and children with cystinuria, including diagnosis, surgery, and medical treatment.


Subject(s)
Cystinuria , Adult , Child , Consensus , Cystine , Cystinuria/diagnosis , Cystinuria/epidemiology , Cystinuria/genetics , Humans , Kidney , Quality of Life
11.
Am J Transplant ; 21(9): 3175-3179, 2021 09.
Article in English | MEDLINE | ID: mdl-33866674

ABSTRACT

Membranous nephropathy (MN) constitutes a major cause of nephrotic syndrome (NS) in adults. After kidney transplantation (KTx), both recurrent and de novo MN has been reported. In addition to PLA2R and THSD7A, recent identification of neural EGFL-like-1 protein, NELL1, as a potential disease antigen has enriched our understanding of MN pathogenesis. To date, NELL1-positive MN has only been described in native kidneys, but never been diagnosed in renal allografts. We here report on a 56-year-old male kidney transplant recipient suffering from amyotrophic lateral sclerosis (ALS), who developed NS 25 years after KTx. Allograft biopsy revealed NELL1-positive MN. Using specifically established immunoblotting techniques, we detected new-onset NELL1-IgG1, IgG3, and IgG4 antibodies in the patient´s serum correlating with the course of proteinuria. While primary renal disease was undetermined, MN recurrence seemed unlikely given the long-time span since KTx. By clinical investigation of de novo etiologies, we did not detect an underlying malignancy. However, previous self-medication with dimercaptopropane sulfonate (DMPS) and alpha lipoic acid (ALA) represented a potential trigger and cessation associated with partial remission of proteinuria. This report illustrates the first case of posttransplant NS due to NELL1-positive MN. Monitoring NELL1 antibodies in the serum promise to be a non-invasive diagnostic tool guiding disease management.


Subject(s)
Glomerulonephritis, Membranous , Kidney Transplantation , Nephrotic Syndrome , Adult , Autoantibodies , Calcium-Binding Proteins , Glomerulonephritis, Membranous/etiology , Humans , Immunoglobulin G , Kidney , Kidney Transplantation/adverse effects , Male , Middle Aged , Nephrotic Syndrome/etiology , Receptors, Phospholipase A2
12.
J Med Genet ; 2020 May 07.
Article in English | MEDLINE | ID: mdl-32381729

ABSTRACT

PURPOSE: Autosomal dominant polycystic kidney disease (ADPKD), caused by pathogenic variants of either PKD1 or PKD2, is characterised by wide interfamilial and intrafamilial phenotypic variability. This study aimed to determine the molecular basis of marked clinical variability in ADPKD family members and sought to analyse whether alterations of WT1 (Wilms tumour 1), encoding a regulator of gene expression, may have an impact on renal cyst formation. METHODS: ADPKD family members underwent clinical and molecular evaluation. Functionally, Pkd1 mRNA and protein expression upon Wt1 knockdown was evaluated in mouse embryonic kidneys and mesonephric M15 cells. RESULTS: By renal gene panel analysis, we identified two pathogenic variants in an individual with maternal history of ADPKD, however, without cystic kidneys but polycystic liver disease: a known PKD1 missense variant (c.8311G>A, p.Glu2771Lys) and a known de novo WT1 splice site variant (c.1432+4C>T). The latter was previously associated with imbalanced +/-KTS isoform ratio of WT1. In ex vivo organ cultures from mouse embryonic kidneys, Wt1 knockdown resulted in decreased Pkd1 expression on mRNA and protein level. CONCLUSION: While the role of WT1 in glomerulopathies has been well established, this report by illustrating genetic interaction with PKD1 proposes WT1 as potential modifier in ADPKD.

13.
J Am Soc Nephrol ; 31(6): 1296-1313, 2020 06.
Article in English | MEDLINE | ID: mdl-32444357

ABSTRACT

BACKGROUND: Monogenic diseases provide favorable opportunities to elucidate the molecular mechanisms of disease progression and improve medical diagnostics. However, the complex interplay between genetic and environmental factors in disease etiologies makes it difficult to discern the mechanistic links between different alleles of a single locus and their associated pathophysiologies. Inverted formin 2 (INF2), an actin regulator, mediates a stress response-calcium mediated actin reset, or CaAR-that reorganizes the actin cytoskeleton of mammalian cells in response to calcium influx. It has been linked to the podocytic kidney disease focal segemental glomerulosclerosis (FSGS), as well as to cases of the neurologic disorder Charcot-Marie-Tooth disease that are accompanied by nephropathy, mostly FSGS. METHODS: We used a combination of quantitative live cell imaging and validation in primary patient cells and Drosophila nephrocytes to systematically characterize a large panel of >50 autosomal dominant INF2 mutants that have been reported to cause either FSGS alone or with Charcot-Marie-Tooth disease. RESULTS: We found that INF2 mutations lead to deregulated activation of formin and a constitutive stress response in cultured cells, primary patient cells, and Drosophila nephrocytes. We were able to clearly distinguish between INF2 mutations that were linked exclusively to FSGS from those that caused a combination of FSGS and Charcot-Marie-Tooth disease. Furthermore, we were able to identify distinct subsets of INF2 variants that exhibit varying degrees of activation. CONCLUSIONS: Our results suggest that CaAR can be used as a sensitive assay for INF2 function and for robust evaluation of diseased-linked variants of formin. More broadly, these findings indicate that cellular profiling of disease-associated mutations has potential to contribute substantially to sequence-based phenotype predictions.


Subject(s)
Charcot-Marie-Tooth Disease/etiology , Formins/genetics , Glomerulosclerosis, Focal Segmental/etiology , Mutation , Animals , Calcium/metabolism , Drosophila , Female , Formins/physiology , HeLa Cells , Humans , Male , Mice , Stress, Physiological
14.
Kidney Int ; 98(4): 958-969, 2020 10.
Article in English | MEDLINE | ID: mdl-32505465

ABSTRACT

Biallelic mutations in MAPKBP1 were recently associated with late-onset cilia-independent nephronophthisis. MAPKBP1 was found at mitotic spindle poles but could not be detected at primary cilia or centrosomes. Here, by identification and characterization of novel MAPKBP1 variants, we aimed at further investigating its role in health and disease. Genetic analysis was done by exome sequencing, homozygosity mapping, and a targeted kidney gene panel while coimmunoprecipitation was used to explore wild-type and mutant protein-protein interactions. Expression of MAPKBP1 in non-ciliated HeLa and ciliated inner medullary collecting duct cells enabled co-localization studies by fluorescence microscopy. By next generation sequencing, we identified two novel homozygous MAPKBP1 splice-site variants in patients with nephronophthisis-related chronic kidney disease. Splice-site analyses revealed truncation of C-terminal coiled-coil domains and patient-derived deletion constructs lost their ability to homodimerize and heterodimerize with paralogous WDR62. While wild-type MAPKBP1 exhibited centrosomal, basal body, and microtubule association, mutant proteins lost the latter and showed reduced recruitment to cell cycle dependent centriolar structures. Wild-type and mutant proteins had no reciprocal influence upon co-expression excluding dominant negative effects. Thus, MAPKBP1 appears to be a novel microtubule-binding protein with cell cycle dependent centriolar localization. Truncation of its coiled-coil domain is enough to abrogate its dimerization and results in severely disturbed intracellular localizations. Delineating the impact of impaired dimerization on cell cycle regulation and intracellular kidney signaling may provide new insights into common mechanisms of kidney degeneration. Thus, due to milder clinical presentation, MAPKBP1-associated nephronophthisis should be considered in adult patients with otherwise unexplained chronic kidney disease.


Subject(s)
Centrosome , Polycystic Kidney Diseases , Adult , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Centrosome/metabolism , Cilia/metabolism , Dimerization , Fibrosis , Humans , Intracellular Signaling Peptides and Proteins , Nerve Tissue Proteins/metabolism , Polycystic Kidney Diseases/metabolism
15.
Am J Hum Genet ; 100(2): 323-333, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28089251

ABSTRACT

Nephronophthisis (NPH), an autosomal-recessive tubulointerstitial nephritis, is the most common cause of hereditary end-stage renal disease in the first three decades of life. Since most NPH gene products (NPHP) function at the primary cilium, NPH is classified as a ciliopathy. We identified mutations in a candidate gene in eight individuals from five families presenting late-onset NPH with massive renal fibrosis. This gene encodes MAPKBP1, a poorly characterized scaffolding protein for JNK signaling. Immunofluorescence analyses showed that MAPKBP1 is not present at the primary cilium and that fibroblasts from affected individuals did not display ciliogenesis defects, indicating that MAPKBP1 may represent a new family of NPHP not involved in cilia-associated functions. Instead, MAPKBP1 is recruited to mitotic spindle poles (MSPs) during the early phases of mitosis where it colocalizes with its paralog WDR62, which plays a key role at MSP. Detected mutations compromise recruitment of MAPKBP1 to the MSP and/or its interaction with JNK2 or WDR62. Additionally, we show increased DNA damage response signaling in fibroblasts from affected individuals and upon knockdown of Mapkbp1 in murine cell lines, a phenotype previously associated with NPH. In conclusion, we identified mutations in MAPKBP1 as a genetic cause of juvenile or late-onset and cilia-independent NPH.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Kidney Diseases, Cystic/congenital , Adolescent , Alleles , Animals , Cell Cycle Proteins , Child , Cilia/genetics , DNA Damage/genetics , Disease Models, Animal , Fibroblasts/cytology , Fibroblasts/metabolism , Fibrosis , Gene Expression Regulation , Humans , Kidney/cytology , Kidney/metabolism , Kidney Diseases, Cystic/diagnosis , Kidney Diseases, Cystic/genetics , Kidney Failure, Chronic/diagnosis , Kidney Failure, Chronic/genetics , Mice , Mice, Knockout , Mitosis , Mutation , NIH 3T3 Cells , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pedigree , Phenotype , Signal Transduction , Spindle Poles/metabolism , Young Adult , Zebrafish
16.
Genet Med ; 22(8): 1374-1383, 2020 08.
Article in English | MEDLINE | ID: mdl-32398770

ABSTRACT

PURPOSE: Autosomal dominant polycystic kidney disease (ADPKD) represents the most common hereditary nephropathy. Despite growing evidence for genetic heterogeneity, ADPKD diagnosis is still primarily based upon clinical imaging criteria established before discovery of additional PKD genes. This study aimed at assessing the diagnostic value of genetic verification in clinical ADPKD. METHODS: In this prospective, diagnostic trial, 100 families with clinically diagnosed ADPKD were analyzed by PKD gene panel and multiplex ligation-dependent probe amplification (MLPA); exome sequencing (ES) was performed in panel/MLPA-negative families. RESULTS: Diagnostic PKD1/2 variants were identified in 81 families (81%), 70 of which in PKD1 and 11 in PKD2. PKD1 variants of unknown significance were detected in another 9 families (9%). Renal survival was significantly worse upon PKD1 truncation versus nontruncation and PKD2 alteration. Ten percent of the cohort were PKD1/2-negative, revealing alternative genetic diagnoses such as autosomal recessive PKD, Birt-Hogg-Dubé syndrome, and ALG9-associated PKD. In addition, among unsolved cases, ES yielded potential novel PKD candidates. CONCLUSION: By illustrating vast genetic heterogeneity, this study demonstrates the value of genetic testing in a real-world PKD cohort by diagnostic verification, falsification, and disease prediction. In the era of specific treatment for fast progressive ADPKD, genetic confirmation should form the basis of personalized patient care.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Genetic Testing , Humans , Mutation , Polycystic Kidney, Autosomal Dominant/diagnosis , Polycystic Kidney, Autosomal Dominant/genetics , Prospective Studies , TRPP Cation Channels/genetics
17.
J Biol Chem ; 293(39): 15243-15255, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30111592

ABSTRACT

Nephronophthisis (NPH) is an autosomal recessive renal disease leading to kidney failure in children and young adults. The protein products of the corresponding genes (NPHPs) are localized in primary cilia or their appendages. Only about 70% of affected individuals have a mutation in one of 100 renal ciliopathy genes, and no unifying pathogenic mechanism has been identified. Recently, some NPHPs, including NIMA-related kinase 8 (NEK8) and centrosomal protein 164 (CEP164), have been found to act in the DNA-damage response pathway and to contribute to genome stability. Here, we show that NME/NM23 nucleoside-diphosphate kinase 3 (NME3) that has recently been found to facilitate DNA-repair mechanisms binds to several NPHPs, including NEK8, CEP164, and ankyrin repeat and sterile α motif domain-containing 6 (ANKS6). Depletion of nme3 in zebrafish and Xenopus resulted in typical ciliopathy-associated phenotypes, such as renal malformations and left-right asymmetry defects. We further found that endogenous NME3 localizes to the basal body and that it associates also with centrosomal proteins, such as NEK6, which regulates cell cycle arrest after DNA damage. The ciliopathy-typical manifestations of NME3 depletion in two vertebrate in vivo models, the biochemical association of NME3 with validated NPHPs, and its localization to the basal body reveal a role for NME3 in ciliary function. We conclude that mutations in the NME3 gene may aggravate the ciliopathy phenotypes observed in humans.


Subject(s)
Ciliopathies/genetics , Kidney Diseases, Cystic/congenital , NM23 Nucleoside Diphosphate Kinases/genetics , Renal Insufficiency/genetics , Animals , Cell Cycle Checkpoints/genetics , Cilia/genetics , Cilia/pathology , Ciliopathies/physiopathology , DNA Damage/genetics , DNA Repair/genetics , Disease Models, Animal , Humans , Kidney/pathology , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Microtubule Proteins/genetics , NIMA-Related Kinases/genetics , Nuclear Proteins/genetics , Renal Insufficiency/pathology , Xenopus/genetics , Zebrafish/genetics
18.
Kidney Int ; 96(1): 222-230, 2019 07.
Article in English | MEDLINE | ID: mdl-31027891

ABSTRACT

End-stage renal disease (ESRD) of undetermined etiology is highly prevalent and constitutes a significant clinical challenge, particularly in the context of kidney transplantation (KT). Despite the identification of numerous rare hereditary nephropathies over the last few decades, patients with undetermined ESRD are not being systematically investigated for rare genetic causes in clinical practice. To address this, we utilized mutation analysis in patients on the kidney transplant waitlist and scrutinized underlying renal diagnoses of 142 patients in a single center KT-waitlist. This cohort was stratified into 85 cases of determined and 57 cases of undetermined ESRD. The latter patients were analyzed by a renal gene panel for mutations in 209 genes associated with ESRD. The most likely genetic diagnoses in 12% of the tested individuals with undetermined ESRD were established. All of these patients showed mutations in genes encoding components of the glomerular filtration barrier. Taken together, hereditary nephropathies, including autosomal dominant polycystic kidney disease, were identified in 35 of the 142 patients of the waitlist cohort. By significantly increasing the proportion of hereditary diagnoses from 29 to 35 patients, the rate of undetermined ESRD significantly decreased from 57 to 51 patients. This study demonstrates the beneficial use of genetic diagnostics in significantly unraveling undetermined ESRD cases prior to KT. Thus, in the absence of renal histology or the presence of unspecific histological conditions, such as hypertensive nephrosclerosis, focal segmental glomerulosclerosis or thrombotic microangiopathy, genetic analysis may provide a robust and specific renal diagnosis and allow for optimizing pre- and post-KT management.


Subject(s)
DNA Mutational Analysis/statistics & numerical data , Genetic Testing/statistics & numerical data , Kidney Failure, Chronic/genetics , Kidney Transplantation , Polycystic Kidney, Autosomal Dominant/diagnosis , Adolescent , Adult , Biomarkers , Biopsy , Feasibility Studies , Female , Humans , Kidney/pathology , Kidney Failure, Chronic/pathology , Kidney Failure, Chronic/surgery , Male , Middle Aged , Polycystic Kidney, Autosomal Dominant/complications , Polycystic Kidney, Autosomal Dominant/genetics , Preoperative Period , Waiting Lists
19.
Hum Genet ; 138(3): 211-219, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30778725

ABSTRACT

Nephrolithiasis (NL) affects 1 in 11 individuals worldwide and causes significant patient morbidity. We previously demonstrated a genetic cause of NL can be identified in 11-29% of pre-dominantly American and European stone formers. Pakistan, which resides within the Afro-Asian stone belt, has a high prevalence of nephrolithiasis (12%) as well as high rate of consanguinity (> 50%). We recruited 235 Pakistani subjects hospitalized for nephrolithiasis from five tertiary hospitals in the Punjab province of Pakistan. Subjects were surveyed for age of onset, NL recurrence, and family history. We conducted high-throughput exon sequencing of 30 NL disease genes and variant analysis to identify monogenic causative mutations in each subject. We detected likely causative mutations in 4 of 30 disease genes, yielding a likely molecular diagnosis in 7% (17 of 235) of NL families. Only 1 of 17 causative mutations was identified in an autosomal recessive disease gene. 10 of the 12 detected mutations were novel mutations (83%). SLC34A1 was most frequently mutated (12 of 17 solved families). We observed a higher frequency of causative mutations in subjects with a positive NL family history (13/109, 12%) versus those with a negative family history (4/120, 3%). Five missense SLC34A1 variants identified through genetic analysis demonstrated defective phosphate transport. We examined the monogenic causes of NL in a novel geographic cohort and most frequently identified dominant mutations in the sodium-phosphate transporter SLC34A1 with functional validation.


Subject(s)
Gene Expression Profiling , Genetic Association Studies , Genetic Predisposition to Disease , Nephrolithiasis/epidemiology , Nephrolithiasis/genetics , Adolescent , Adult , Aged , Alleles , Animals , Child , Child, Preschool , Cohort Studies , DNA Mutational Analysis , Family , Female , Gene Expression Profiling/methods , Genotype , Geography, Medical , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Middle Aged , Mutation , Pakistan/epidemiology , Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics , Xenopus laevis , Young Adult
20.
Am J Hum Genet ; 98(6): 1228-1234, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27210743

ABSTRACT

Nephrolithiasis, a condition in which urinary supersaturation leads to stone formation in the urinary system, affects about 5%-10% of individuals worldwide at some point in their lifetime and results in significant medical costs and morbidity. To date, mutations in more than 30 genes have been described as being associated with nephrolithiasis, and these mutations explain about 15% of kidney stone cases, suggesting that additional nephrolithiasis-associated genes remain to be discovered. To identify additional genes whose mutations are linked to nephrolithiasis, we performed targeted next-generation sequencing of 18 hypothesized candidate genes in 348 unrelated individuals with kidney stones. We detected biallelic mutations in SLC26A1 (solute carrier family 26 member 1) in two unrelated individuals with calcium oxalate kidney stones. We show by immunofluorescence, immunoblotting, and glycosylation analysis that the variant protein mimicking p.Thr185Met has defects in protein folding or trafficking. In addition, by measuring anion exchange activity of SLC26A1, we demonstrate that all the identified mutations in SLC26A1 result in decreased transporter activity. Our data identify SLC26A1 mutations as causing a recessive Mendelian form of nephrolithiasis.


Subject(s)
Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Mutation/genetics , Nephrolithiasis/etiology , Amino Acid Sequence , Anion Transport Proteins/chemistry , Bicarbonates/metabolism , Fluorescent Antibody Technique , Glycosylation , High-Throughput Nucleotide Sequencing , Humans , Immunoblotting , Nephrolithiasis/pathology , Protein Conformation , Protein Folding , Protein Transport , Real-Time Polymerase Chain Reaction , Sequence Homology, Amino Acid , Sulfate Transporters , Sulfates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL