Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Nature ; 609(7925): 101-108, 2022 09.
Article in English | MEDLINE | ID: mdl-35798029

ABSTRACT

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing and/or sequencing capacity, which can also introduce biases1-3. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing4,5. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We developed and deployed improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detected emerging variants of concern up to 14 days earlier in wastewater samples, and identified multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Wastewater-Based Epidemiological Monitoring , Wastewater , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Humans , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA , Wastewater/virology
2.
medRxiv ; 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35411350

ABSTRACT

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing/sequencing capacity, which can also introduce biases. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here, we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We develop and deploy improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detect emerging variants of concern up to 14 days earlier in wastewater samples, and identify multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.

3.
Genetica ; 136(1): 97-107, 2009 May.
Article in English | MEDLINE | ID: mdl-18780148

ABSTRACT

One of the biggest challenges facing evolutionary biologists is to identify and understand loci that explain fitness variation in natural populations. This review describes how genetic (linkage) mapping with single nucleotide polymorphism (SNP) markers can lead to great progress in this area. Strategies for SNP discovery and SNP genotyping are described and an overview of how to model SNP genotype information in mapping studies is presented. Finally, the opportunity afforded by new generation sequencing and typing technologies to map fitness genes by genome-wide association studies is discussed.


Subject(s)
Chromosome Mapping/trends , Polymorphism, Single Nucleotide , Base Sequence , Chromosome Mapping/standards , Genetic Linkage , Microsatellite Repeats , Molecular Sequence Data , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL