ABSTRACT
BACKGROUND: The practical application of 'virtual' (computed) fractional flow reserve (vFFR) based on invasive coronary angiogram (ICA) images is unknown. The objective of this cohort study was to investigate the potential of vFFR to guide the management of unselected patients undergoing ICA. The hypothesis was that it changes management in >10% of cases. METHODS: vFFR was computed using the Sheffield VIRTUheart system, at five hospitals in the North of England, on 'all-comers' undergoing ICA for non-ST-elevation myocardial infarction acute coronary syndrome (ACS) and chronic coronary syndrome (CCS). The cardiologists' management plan (optimal medical therapy, percutaneous coronary intervention (PCI), coronary artery bypass surgery or 'more information required') and confidence level were recorded after ICA, and again after vFFR disclosure. RESULTS: 517 patients were screened; 320 were recruited: 208 with ACS and 112 with CCS. The median vFFR was 0.82 (0.70-0.91). vFFR disclosure did not change the mean number of significantly stenosed vessels per patient (1.16 (±0.96) visually and 1.18 (±0.92) with vFFR (p=0.79)). A change in intended management following vFFR disclosure occurred in 22% of all patients; in the ACS cohort, there was a 62% increase in the number planned for medical management, and in the CCS cohort, there was a 31% increase in the number planned for PCI. In all patients, vFFR disclosure increased physician confidence from 8 of 10 (7.33-9) to 9 of 10 (8-10) (p<0.001). CONCLUSION: The addition of vFFR to ICA changed intended management strategy in 22% of patients, provided a detailed and specific 'all-in-one' anatomical and physiological assessment of coronary artery disease, and was accompanied by augmentation of the operator's confidence in the treatment strategy.
Subject(s)
Acute Coronary Syndrome , Coronary Angiography , Fractional Flow Reserve, Myocardial , Humans , Fractional Flow Reserve, Myocardial/physiology , Female , Male , Middle Aged , Acute Coronary Syndrome/therapy , Acute Coronary Syndrome/physiopathology , Acute Coronary Syndrome/diagnostic imaging , Aged , Percutaneous Coronary Intervention/methods , England , Myocardial Infarction/therapy , Myocardial Infarction/physiopathology , Myocardial Infarction/diagnostic imaging , Coronary Artery Disease/physiopathology , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapyABSTRACT
The role of 'stand-alone' coronary angiography (CAG) in the management of patients with chronic coronary syndromes is the subject of debate, with arguments for its replacement with CT angiography on the one hand and its confinement to the interventional cardiac catheter laboratory on the other. Nevertheless, it remains the standard of care in most centres. Recently, computational methods have been developed in which the laws of fluid dynamics can be applied to angiographic images to yield 'virtual' (computed) measures of blood flow, such as fractional flow reserve. Together with the CAG itself, this technology can provide an 'all-in-one' anatomical and functional investigation, which is particularly useful in the case of borderline lesions. It can add to the diagnostic value of CAG by providing increased precision and reduce the need for further non-invasive and functional tests of ischaemia, at minimal cost. In this paper, we place this technology in context, with emphasis on its potential to become established in the diagnostic workup of patients with suspected coronary artery disease, particularly in the non-interventional setting. We discuss the derivation and reliability of angiographically derived fractional flow reserve (CAG-FFR) as well as its limitations and how CAG-FFR could be integrated within existing national guidance. The assessment of coronary physiology may no longer be the preserve of the interventional cardiologist.
Subject(s)
Computed Tomography Angiography , Coronary Disease/diagnostic imaging , Fractional Flow Reserve, Myocardial , Clinical Decision-Making , Coronary Artery Bypass , Coronary Disease/surgery , HumansABSTRACT
The current management of acute coronary syndromes (ACS) is with an invasive strategy to guide treatment. However, identifying the lesions which are physiologically significant can be challenging. Non-invasive imaging is generally not appropriate or timely in the acute setting, so the decision is generally based upon visual assessment of the angiogram, supplemented in a small minority by invasive pressure wire studies using fractional flow reserve (FFR) or related indices. Whilst pressure wire usage is slowly increasing, it is not feasible in many vessels, patients and situations. Limited evidence for the use of FFR in non-ST elevation (NSTE) ACS suggests a 25% change in management, compared with traditional assessment, with a shift from more to less extensive revascularisation. Virtual (computed) FFR (vFFR), which uses a 3D model of the coronary arteries constructed from the invasive angiogram, and application of the physical laws of fluid flow, has the potential to be used more widely in this situation. It is less invasive, fast and can be integrated into catheter laboratory software. For severe lesions, or mild disease, it is probably not required, but it could improve the management of moderate disease in 'real time' for patients with non-ST elevation acute coronary syndromes (NSTE-ACS), and in bystander disease in ST elevation myocardial infarction. Its practicability and impact in the acute setting need to be tested, but the underpinning science and potential benefits for rapid and streamlined decision-making are enticing.