Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
Add more filters

Publication year range
1.
Cell ; 185(6): 995-1007.e18, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35303429

ABSTRACT

Several ebolaviruses cause outbreaks of severe disease. Vaccines and monoclonal antibody cocktails are available to treat Ebola virus (EBOV) infections, but not Sudan virus (SUDV) or other ebolaviruses. Current cocktails contain antibodies that cross-react with the secreted soluble glycoprotein (sGP) that absorbs virus-neutralizing antibodies. By sorting memory B cells from EBOV infection survivors, we isolated two broadly reactive anti-GP monoclonal antibodies, 1C3 and 1C11, that potently neutralize, protect rodents from disease, and lack sGP cross-reactivity. Both antibodies recognize quaternary epitopes in trimeric ebolavirus GP. 1C11 bridges adjacent protomers via the fusion loop. 1C3 has a tripartite epitope in the center of the trimer apex. One 1C3 antigen-binding fragment anchors simultaneously to the three receptor-binding sites in the GP trimer, and separate 1C3 paratope regions interact differently with identical residues on the three protomers. A cocktail of both antibodies completely protected nonhuman primates from EBOV and SUDV infections, indicating their potential clinical value.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Epitopes , Glycoproteins/chemistry , Protein Subunits
2.
Cell ; 177(6): 1566-1582.e17, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31104840

ABSTRACT

Ebola virus (EBOV) remains a public health threat. We performed a longitudinal study of B cell responses to EBOV in four survivors of the 2014 West African outbreak. Infection induced lasting EBOV-specific immunoglobulin G (IgG) antibodies, but their subclass composition changed over time, with IgG1 persisting, IgG3 rapidly declining, and IgG4 appearing late. Striking changes occurred in the immunoglobulin repertoire, with massive recruitment of naive B cells that subsequently underwent hypermutation. We characterized a large panel of EBOV glycoprotein-specific monoclonal antibodies (mAbs). Only a small subset of mAbs that bound glycoprotein by ELISA recognized cell-surface glycoprotein. However, this subset contained all neutralizing mAbs. Several mAbs protected against EBOV disease in animals, including one mAb that targeted an epitope under evolutionary selection during the 2014 outbreak. Convergent antibody evolution was seen across multiple donors, particularly among VH3-13 neutralizing antibodies specific for the GP1 core. Our study provides a benchmark for assessing EBOV vaccine-induced immunity.


Subject(s)
Antibodies, Monoclonal/immunology , B-Lymphocytes/physiology , Hemorrhagic Fever, Ebola/immunology , Adult , Amino Acid Sequence/genetics , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/metabolism , Chlorocebus aethiops , Ebola Vaccines/immunology , Ebolavirus/genetics , Ebolavirus/metabolism , Ebolavirus/pathogenicity , Epitopes/blood , Female , Glycoproteins/genetics , Hemorrhagic Fever, Ebola/metabolism , Hemorrhagic Fever, Ebola/virology , Humans , Immunoglobulin G/immunology , Jurkat Cells , Longitudinal Studies , Male , Mice , Mice, Inbred BALB C , Survivors , Vero Cells , Viral Envelope Proteins/genetics
3.
Cell ; 174(4): 938-952.e13, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30096313

ABSTRACT

Antibodies are promising post-exposure therapies against emerging viruses, but which antibody features and in vitro assays best forecast protection are unclear. Our international consortium systematically evaluated antibodies against Ebola virus (EBOV) using multidisciplinary assays. For each antibody, we evaluated epitopes recognized on the viral surface glycoprotein (GP) and secreted glycoprotein (sGP), readouts of multiple neutralization assays, fraction of virions left un-neutralized, glycan structures, phagocytic and natural killer cell functions elicited, and in vivo protection in a mouse challenge model. Neutralization and induction of multiple immune effector functions (IEFs) correlated most strongly with protection. Neutralization predominantly occurred via epitopes maintained on endosomally cleaved GP, whereas maximal IEF mapped to epitopes farthest from the viral membrane. Unexpectedly, sGP cross-reactivity did not significantly influence in vivo protection. This comprehensive dataset provides a rubric to evaluate novel antibodies and vaccine responses and a roadmap for therapeutic development for EBOV and related viruses.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Ebolavirus/immunology , Epitopes/immunology , Hemorrhagic Fever, Ebola/prevention & control , Membrane Glycoproteins/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Female , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Immunization , Mice , Mice, Inbred BALB C , Treatment Outcome
4.
Immunity ; 54(4): 815-828.e5, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852832

ABSTRACT

Protective Ebola virus (EBOV) antibodies have neutralizing activity and induction of antibody constant domain (Fc)-mediated innate immune effector functions. Efforts to enhance Fc effector functionality often focus on maximizing antibody-dependent cellular cytotoxicity, yet distinct combinations of functions could be critical for antibody-mediated protection. As neutralizing antibodies have been cloned from EBOV disease survivors, we sought to identify survivor Fc effector profiles to help guide Fc optimization strategies. Survivors developed a range of functional antibody responses, and we therefore applied a rapid, high-throughput Fc engineering platform to define the most protective profiles. We generated a library of Fc variants with identical antigen-binding fragments (Fabs) from an EBOV neutralizing antibody. Fc variants with antibody-mediated complement deposition and moderate natural killer (NK) cell activity demonstrated complete protective activity in a stringent in vivo mouse model. Our findings highlight the importance of specific effector functions in antibody-mediated protection, and the experimental platform presents a generalizable resource for identifying correlates of immunity to guide therapeutic antibody design.


Subject(s)
Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fc Fragments/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Female , HEK293 Cells , Hemorrhagic Fever, Ebola/virology , Humans , Immunoglobulin G/immunology , Mice, Inbred BALB C , Receptors, Fc/immunology
5.
Immunity ; 54(6): 1290-1303.e7, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34022127

ABSTRACT

Dissecting the evolution of memory B cells (MBCs) against SARS-CoV-2 is critical for understanding antibody recall upon secondary exposure. Here, we used single-cell sequencing to profile SARS-CoV-2-reactive B cells in 38 COVID-19 patients. Using oligo-tagged antigen baits, we isolated B cells specific to the SARS-CoV-2 spike, nucleoprotein (NP), open reading frame 8 (ORF8), and endemic human coronavirus (HCoV) spike proteins. SARS-CoV-2 spike-specific cells were enriched in the memory compartment of acutely infected and convalescent patients several months post symptom onset. With severe acute infection, substantial populations of endemic HCoV-reactive antibody-secreting cells were identified and possessed highly mutated variable genes, signifying preexisting immunity. Finally, MBCs exhibited pronounced maturation to NP and ORF8 over time, especially in older patients. Monoclonal antibodies against these targets were non-neutralizing and non-protective in vivo. These findings reveal antibody adaptation to non-neutralizing intracellular antigens during infection, emphasizing the importance of vaccination for inducing neutralizing spike-specific MBCs.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Host-Pathogen Interactions/immunology , Immunodominant Epitopes/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibody Formation/genetics , B-Lymphocytes/metabolism , Computational Biology/methods , Cross Reactions/immunology , Epitope Mapping , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions/genetics , Humans , Immunodominant Epitopes/genetics , Immunologic Memory , Male , Neutralization Tests , Single-Cell Analysis/methods , Spike Glycoprotein, Coronavirus/immunology , Transcriptome
6.
Cell ; 154(4): 763-74, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23953110

ABSTRACT

Proteins, particularly viral proteins, can be multifunctional, but the mechanisms behind multifunctionality are not fully understood. Here, we illustrate through multiple crystal structures, biochemistry, and cellular microscopy that VP40 rearranges into different structures, each with a distinct function required for the ebolavirus life cycle. A butterfly-shaped VP40 dimer traffics to the cellular membrane. Once there, electrostatic interactions trigger rearrangement of the polypeptide into a linear hexamer. These hexamers construct a multilayered, filamentous matrix structure that is critical for budding and resembles tomograms of authentic virions. A third structure of VP40, formed by a different rearrangement, is not involved in virus assembly but instead uniquely binds RNA to regulate viral transcription inside infected cells. These results provide a functional model for ebolavirus matrix assembly and the other roles of VP40 in the virus life cycle and demonstrate how a single wild-type, unmodified polypeptide can assemble into different structures for different functions.


Subject(s)
Ebolavirus/metabolism , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/metabolism , Crystallography, X-Ray , Dimerization , Ebolavirus/chemistry , Ebolavirus/classification , Ebolavirus/genetics , Models, Molecular , Mutagenesis , Point Mutation , Viral Matrix Proteins/genetics , Virus Assembly , Virus Release
7.
Nature ; 612(7940): 540-545, 2022 12.
Article in English | MEDLINE | ID: mdl-36323336

ABSTRACT

The BA.2 sublineage of the SARS-CoV-2 Omicron variant has become dominant in most countries around the world; however, the prevalence of BA.4 and BA.5 is increasing rapidly in several regions. BA.2 is less pathogenic in animal models than previously circulating variants of concern1-4. Compared with BA.2, however, BA.4 and BA.5 possess additional substitutions in the spike protein, which play a key role in viral entry, raising concerns that the replication capacity and pathogenicity of BA.4 and BA.5 are higher than those of BA.2. Here we have evaluated the replicative ability and pathogenicity of BA.4 and BA.5 isolates in wild-type Syrian hamsters, human ACE2 (hACE2) transgenic hamsters and hACE2 transgenic mice. We have observed no obvious differences among BA.2, BA.4 and BA.5 isolates in growth ability or pathogenicity in rodent models, and less pathogenicity compared to a previously circulating Delta (B.1.617.2 lineage) isolate. In addition, in vivo competition experiments revealed that BA.5 outcompeted BA.2 in hamsters, whereas BA.4 and BA.2 exhibited similar fitness. These findings suggest that BA.4 and BA.5 clinical isolates have similar pathogenicity to BA.2 in rodents and that BA.5 possesses viral fitness superior to that of BA.2.


Subject(s)
COVID-19 , Genetic Fitness , Rodentia , SARS-CoV-2 , Animals , Cricetinae , Humans , Mice , COVID-19/virology , Mesocricetus/virology , Mice, Transgenic , Rodentia/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Animals, Genetically Modified , Genetic Fitness/genetics , Genetic Fitness/physiology , Virulence
8.
Nature ; 607(7917): 119-127, 2022 07.
Article in English | MEDLINE | ID: mdl-35576972

ABSTRACT

The recent emergence of SARS-CoV-2 Omicron (B.1.1.529 lineage) variants possessing numerous mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies and antiviral drugs for COVID-19 against these variants1,2. The original Omicron lineage, BA.1, prevailed in many countries, but more recently, BA.2 has become dominant in at least 68 countries3. Here we evaluated the replicative ability and pathogenicity of authentic infectious BA.2 isolates in immunocompetent and human ACE2-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone4, we observed similar infectivity and pathogenicity in mice and hamsters for BA.2 and BA.1, and less pathogenicity compared with early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from individuals who had recovered from COVID-19 and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987 plus REGN10933, COV2-2196 plus COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir and S-217622) can restrict viral infection in the respiratory organs of BA.2-infected hamsters. These findings suggest that the replication and pathogenicity of BA.2 is similar to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron BA.2 variants.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/pharmacology , Antibodies, Viral/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Cricetinae , Cytidine/analogs & derivatives , Drug Combinations , Hydroxylamines , Indazoles , Lactams , Leucine , Mice , Nitriles , Proline , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Triazines , Triazoles
9.
Nature ; 603(7902): 687-692, 2022 03.
Article in English | MEDLINE | ID: mdl-35062015

ABSTRACT

The recent emergence of B.1.1.529, the Omicron variant1,2, has raised concerns of escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in preclinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of several B.1.1.529 isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. Despite modelling data indicating that B.1.1.529 spike can bind more avidly to mouse ACE2 (refs. 3,4), we observed less infection by B.1.1.529 in 129, C57BL/6, BALB/c and K18-hACE2 transgenic mice than by previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease and pathology with B.1.1.529 were also milder than with historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from the SAVE/NIAID network with several B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.


Subject(s)
COVID-19/pathology , COVID-19/virology , Disease Models, Animal , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cricetinae , Female , Humans , Lung/pathology , Lung/virology , Male , Mesocricetus , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Viral Load
10.
Nature ; 602(7898): 664-670, 2022 02.
Article in English | MEDLINE | ID: mdl-35016195

ABSTRACT

The recently emerged SARS-CoV-2 Omicron variant encodes 37 amino acid substitutions in the spike protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody-based therapeutics. Here we show that the Omicron RBD binds to human ACE2 with enhanced affinity, relative to the Wuhan-Hu-1 RBD, and binds to mouse ACE2. Marked reductions in neutralizing activity were observed against Omicron compared to the ancestral pseudovirus in plasma from convalescent individuals and from individuals who had been vaccinated against SARS-CoV-2, but this loss was less pronounced after a third dose of vaccine. Most monoclonal antibodies that are directed against the receptor-binding motif lost in vitro neutralizing activity against Omicron, with only 3 out of 29 monoclonal antibodies retaining unaltered potency, including the ACE2-mimicking S2K146 antibody1. Furthermore, a fraction of broadly neutralizing sarbecovirus monoclonal antibodies neutralized Omicron through recognition of antigenic sites outside the receptor-binding motif, including sotrovimab2, S2X2593 and S2H974. The magnitude of Omicron-mediated immune evasion marks a major antigenic shift in SARS-CoV-2. Broadly neutralizing monoclonal antibodies that recognize RBD epitopes that are conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Antigenic Drift and Shift/immunology , Broadly Neutralizing Antibodies/immunology , Neutralization Tests , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antigenic Drift and Shift/genetics , COVID-19 Vaccines/immunology , Cell Line , Convalescence , Epitopes, B-Lymphocyte/immunology , Humans , Immune Evasion , Mice , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vesiculovirus/genetics
11.
Nature ; 605(7911): 640-652, 2022 05.
Article in English | MEDLINE | ID: mdl-35361968

ABSTRACT

The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Biological Evolution , COVID-19 Vaccines , Humans , National Institute of Allergy and Infectious Diseases (U.S.) , Pandemics/prevention & control , Pharmacogenomic Variants , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , United States/epidemiology , Virulence
12.
J Proteome Res ; 23(1): 149-160, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38043095

ABSTRACT

Host RNA binding proteins recognize viral RNA and play key roles in virus replication and antiviral mechanisms. SARS-CoV-2 generates a series of tiered subgenomic RNAs (sgRNAs), each encoding distinct viral protein(s) that regulate different aspects of viral replication. Here, for the first time, we demonstrate the successful isolation of SARS-CoV-2 genomic RNA and three distinct sgRNAs (N, S, and ORF8) from a single population of infected cells and characterize their protein interactomes. Over 500 protein interactors (including 260 previously unknown) were identified as associated with one or more target RNA. These included protein interactors unique to a single RNA pool and others present in multiple pools, highlighting our ability to discriminate between distinct viral RNA interactomes despite high sequence similarity. Individual interactomes indicated viral associations with cell response pathways, including regulation of cytoplasmic ribonucleoprotein granules and posttranscriptional gene silencing. We tested the significance of three protein interactors in these pathways (APOBEC3F, PPP1CC, and MSI2) using siRNA knockdowns, with several knockdowns affecting viral gene expression, most consistently PPP1CC. This study describes a new technology for high-resolution studies of SARS-CoV-2 RNA regulation and reveals a wealth of new viral RNA-associated host factors of potential functional significance to infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Subgenomic RNA , RNA, Viral/genetics , RNA, Viral/metabolism , COVID-19/genetics , Virus Replication/genetics , Genomics , RNA-Binding Proteins/genetics
13.
PLoS Pathog ; 18(9): e1010876, 2022 09.
Article in English | MEDLINE | ID: mdl-36178969

ABSTRACT

The SARS-CoV-2 Delta Variant of Concern is highly transmissible and contains mutations that confer partial immune escape. The emergence of Delta in North America caused the first surge in COVID-19 cases after SARS-CoV-2 vaccines became widely available. To determine whether individuals infected despite vaccination might be capable of transmitting SARS-CoV-2, we compared RT-PCR cycle threshold (Ct) data from 20,431 test-positive anterior nasal swab specimens from fully vaccinated (n = 9,347) or unvaccinated (n = 11,084) individuals tested at a single commercial laboratory during the interval 28 June- 1 December 2021 when Delta variants were predominant. We observed no significant effect of vaccine status alone on Ct value, nor when controlling for vaccine product or sex. Testing a subset of low-Ct (<25) samples, we detected infectious virus at similar rates, and at similar titers, in specimens from vaccinated and unvaccinated individuals. These data indicate that vaccinated individuals infected with Delta variants are capable of shedding infectious SARS-CoV-2 and could play a role in spreading COVID-19.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination
14.
PLoS Biol ; 19(6): e3001265, 2021 06.
Article in English | MEDLINE | ID: mdl-34143766

ABSTRACT

The search for potential antibody-based diagnostics, vaccines, and therapeutics for pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has focused almost exclusively on the spike (S) and nucleocapsid (N) proteins. Coronavirus membrane (M), ORF3a, and ORF8 proteins are humoral immunogens in other coronaviruses (CoVs) but remain largely uninvestigated for SARS-CoV-2. Here, we use ultradense peptide microarray mapping to show that SARS-CoV-2 infection induces robust antibody responses to epitopes throughout the SARS-CoV-2 proteome, particularly in M, in which 1 epitope achieved excellent diagnostic accuracy. We map 79 B cell epitopes throughout the SARS-CoV-2 proteome and demonstrate that antibodies that develop in response to SARS-CoV-2 infection bind homologous peptide sequences in the 6 other known human CoVs. We also confirm reactivity against 4 of our top-ranking epitopes by enzyme-linked immunosorbent assay (ELISA). Illness severity correlated with increased reactivity to 9 SARS-CoV-2 epitopes in S, M, N, and ORF3a in our population. Our results demonstrate previously unknown, highly reactive B cell epitopes throughout the full proteome of SARS-CoV-2 and other CoV proteins.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Viral Proteins/immunology , Antibodies, Viral/blood , COVID-19/pathology , Coronavirus/immunology , Cross Reactions , Epitopes, B-Lymphocyte , Humans , Immunodominant Epitopes , Immunoglobulin G/blood , Immunoglobulin G/immunology , Proteome/immunology , Severity of Illness Index
15.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: mdl-34140350

ABSTRACT

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in viral infectivity. It is also the major antigen stimulating the host's protective immune response, specifically, the production of neutralizing antibodies. Recently, a new variant of SARS-CoV-2 possessing multiple mutations in the S protein, designated P.1, emerged in Brazil. Here, we characterized a P.1 variant isolated in Japan by using Syrian hamsters, a well-established small animal model for the study of SARS-CoV-2 disease (COVID-19). In hamsters, the variant showed replicative abilities and pathogenicity similar to those of early and contemporary strains (i.e., SARS-CoV-2 bearing aspartic acid [D] or glycine [G] at position 614 of the S protein). Sera and/or plasma from convalescent patients and BNT162b2 messenger RNA vaccinees showed comparable neutralization titers across the P.1 variant, S-614D, and S-614G strains. In contrast, the S-614D and S-614G strains were less well recognized than the P.1 variant by serum from a P.1-infected patient. Prior infection with S-614D or S-614G strains efficiently prevented the replication of the P.1 variant in the lower respiratory tract of hamsters upon reinfection. In addition, passive transfer of neutralizing antibodies to hamsters infected with the P.1 variant or the S-614G strain led to reduced virus replication in the lower respiratory tract. However, the effect was less pronounced against the P.1 variant than the S-614G strain. These findings suggest that the P.1 variant may be somewhat antigenically different from the early and contemporary strains of SARS-CoV-2.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Virus Replication , Animals , Antibodies, Neutralizing , COVID-19/diagnostic imaging , COVID-19/pathology , Cricetinae , Humans , Immunogenicity, Vaccine , Lung/pathology , Mesocricetus , Mice , Spike Glycoprotein, Coronavirus/genetics , X-Ray Microtomography
16.
J Infect Dis ; 228(Suppl 7): S508-S513, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37578011

ABSTRACT

Ebola virus (EBOV) induces cell death not only in infected permissive cells but also in nonpermissive, bystander cells by employing different mechanisms. Hydroxycarboxylic acid receptor 2 (HCAR2) has been reported to be involved in apoptotic cell death. We previously reported an increase in the expression of HCAR2-specific mRNA in EBOV-infected individuals with fatal outcomes. Here, we report that infection with an EBOV lacking the VP30 gene (EBOVΔVP30) results in the upregulation of HCAR2 mRNA expression in human hepatocyte Huh7.0 cells stably expressing VP30. Transient overexpression of HCAR2 reduced the viability of Huh7.0 cells and human embryonic kidney cells. Phosphatidylserine externalization and cell membrane permeabilization by HCAR2 overexpression was also observed. Interestingly, coexpression of HCAR2 with EBOV VP40 further reduced cell viability in transfected cells compared to HCAR2 coexpression with other viral proteins. Our data suggest that HCAR2 may contribute to EBOV-induced cell death.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Cell Death , Ebolavirus/physiology , RNA, Messenger/metabolism , Viral Proteins/metabolism
17.
J Infect Dis ; 228(Suppl 7): S514-S521, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37562033

ABSTRACT

Ebola virus (EBOV) is a highly pathogenic virus that encodes 7 multifunctional structural proteins. Multiple host factors have been reported to interact with the EBOV proteins. Here, we found that tripartite motif-containing 14 (TRIM14), an interferon-stimulated gene that mediates cellular signaling pathways associated with type I interferon and inflammatory cytokine production, interacts with EBOV nucleoprotein to enhance interferon-ß (IFN-ß) and nuclear factor-κB (NF-κB) promotor activation. Moreover, TRIM14 overexpression reduced viral replication in an infectious but biologically contained EBOVΔVP30 system by approximately 10-fold without affecting viral protein expression. Furthermore, TRM14-deficient mice were more susceptible to mouse-adapted EBOV infection than wild-type mice. Our data suggest that TRIM14 is a host factor with anti-EBOV activity that limits EBOV pathogenesis.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Mice , Ebolavirus/genetics , Interferon Type I/metabolism , Viral Proteins/metabolism
18.
J Infect Dis ; 228(Suppl 7): S587-S593, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37379580

ABSTRACT

BACKGROUND: Ebola virus (EBOV) is considered among the most dangerous viruses with case fatality rates approaching 90% depending on the outbreak. While several viral proteins (VPs) including VP24, VP35, and the soluble glycoprotein are understood to contribute to virulence, less is known of the contribution of the highly variable mucin-like domain (MLD) of EBOV. Early studies have defined a potential role in immune evasion of the MLD by providing a glycan shield to critical glycoprotein residues tied to viral entry. Nonetheless, little is known as to what direct role the MLD plays in acute EBOV disease (EVD). METHODS: We generated an infectious EBOV clone that lacks the MLD and assessed its virulence in ferrets compared with wild-type (WT) virus. RESULTS: No differences in growth kinetics were observed in vitro, nor were there any differences in time to death, viremia, or clinical picture in ferrets infected with recombinant EBOV (rEBOV)-WT or rEBOV-Δmucin. CONCLUSIONS: The EBOV MLD does not play a critical role in acute pathogenesis of EVD in ferrets.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Humans , Mucins , Virulence , Ferrets , Glycoproteins/genetics , Glycoproteins/metabolism
19.
Small ; 19(8): e2205819, 2023 02.
Article in English | MEDLINE | ID: mdl-36564365

ABSTRACT

Immunogenic carrier proteins such as the non-toxic diphtheria toxin variant, cross-reacting material 197 (CRM197), are widely used in subunit vaccine formulations to boost immunogenicity of chemically conjugated antigens. Conjugate vaccines are inherently expensive due to laborious manufacturing steps. Here, this work develops a particulate vaccine platform based on using engineered Escherichia coli to assemble CRM197-antigen fusion proteins into discrete submicron-sized particles. This approach enables precise loading of diverse antigens and epitopes enhancing their immunogenicity. A cost-effective, high-yield, and scalable biomanufacturing process is developed. Purified particulate CRM197-antigen vaccines are ambient-temperature stable. CRM197 particles incorporating pathogen-specific antigens or epitopes from SARS-CoV-2, Streptococcus pyogenes (group A), and Mycobacterium tuberculosis induced cell-mediated and humoral immune responses mediating protective immunity in respective animal models of infection. The CRM197 particle vaccine platform is versatile, enabling co-delivery of selected antigens/epitopes together with immunogenic CRM197 as discrete stable particles avoiding laborious manufacture of soluble CRM197 and antigen followed by chemical conjugation.


Subject(s)
COVID-19 , Animals , SARS-CoV-2 , Bacterial Proteins/chemistry , Vaccines, Synthetic , Vaccines, Conjugate , Antigens , Epitopes
20.
PLoS Pathog ; 17(1): e1009033, 2021 01.
Article in English | MEDLINE | ID: mdl-33411764

ABSTRACT

The p53 transcription factor plays a key role both in cancer and in the cell-intrinsic response to infections. The ORFEOME project hypothesized that novel p53-virus interactions reside in hitherto uncharacterized, unknown, or hypothetical open reading frames (orfs) of human viruses. Hence, 172 orfs of unknown function from the emerging viruses SARS-Coronavirus, MERS-Coronavirus, influenza, Ebola, Zika (ZIKV), Chikungunya and Kaposi Sarcoma-associated herpesvirus (KSHV) were de novo synthesized, validated and tested in a functional screen of p53 signaling. This screen revealed novel mechanisms of p53 virus interactions and two viral proteins KSHV orf10 and ZIKV NS2A binding to p53. Originally identified as the target of small DNA tumor viruses, these experiments reinforce the notion that all viruses, including RNA viruses, interfere with p53 functions. These results validate this resource for analogous systems biology approaches to identify functional properties of uncharacterized viral proteins, long non-coding RNAs and micro RNAs.


Subject(s)
Communicable Diseases, Emerging/virology , RNA Viruses/metabolism , Signal Transduction/genetics , Tumor Suppressor Protein p53/metabolism , Chikungunya virus/genetics , Chikungunya virus/metabolism , Coronavirus/genetics , Coronavirus/metabolism , Ebolavirus/genetics , Ebolavirus/metabolism , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/metabolism , Humans , Influenza A virus/genetics , Influenza A virus/metabolism , Open Reading Frames , RNA Viruses/genetics , Tumor Suppressor Protein p53/genetics , Viral Nonstructural Proteins/metabolism , Zika Virus/genetics , Zika Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL