Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
Add more filters

Publication year range
1.
Cell ; 185(12): 2116-2131.e18, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35662412

ABSTRACT

Highly transmissible Omicron variants of SARS-CoV-2 currently dominate globally. Here, we compare neutralization of Omicron BA.1, BA.1.1, and BA.2. BA.2 RBD has slightly higher ACE2 affinity than BA.1 and slightly reduced neutralization by vaccine serum, possibly associated with its increased transmissibility. Neutralization differences between sub-lineages for mAbs (including therapeutics) mostly arise from variation in residues bordering the ACE2 binding site; however, more distant mutations S371F (BA.2) and R346K (BA.1.1) markedly reduce neutralization by therapeutic antibody Vir-S309. In-depth structure-and-function analyses of 27 potent RBD-binding mAbs isolated from vaccinated volunteers following breakthrough Omicron-BA.1 infection reveals that they are focused in two main clusters within the RBD, with potent right-shoulder antibodies showing increased prevalence. Selection and somatic maturation have optimized antibody potency in less-mutated epitopes and recovered potency in highly mutated epitopes. All 27 mAbs potently neutralize early pandemic strains, and many show broad reactivity with variants of concern.


Subject(s)
Antibodies, Monoclonal , COVID-19 Vaccines/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Viral , COVID-19 , COVID-19 Vaccines/administration & dosage , Epitopes , Humans , Neutralization Tests , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
2.
Cell ; 185(14): 2422-2433.e13, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35772405

ABSTRACT

The Omicron lineage of SARS-CoV-2, which was first described in November 2021, spread rapidly to become globally dominant and has split into a number of sublineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africa's Gauteng region uncovered two new sublineages, BA.4 and BA.5, which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences, and although closely related to BA.2, they contain further mutations in the receptor-binding domain of their spikes. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by the serum from individuals vaccinated with triple doses of AstraZeneca or Pfizer vaccine compared with BA.1 and BA.2. Furthermore, using the serum from BA.1 vaccine breakthrough infections, there are, likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Neutralization Tests , SARS-CoV-2/genetics , South Africa
3.
Cell ; 184(8): 2183-2200.e22, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33756110

ABSTRACT

Antibodies are crucial to immune protection against SARS-CoV-2, with some in emergency use as therapeutics. Here, we identify 377 human monoclonal antibodies (mAbs) recognizing the virus spike and focus mainly on 80 that bind the receptor binding domain (RBD). We devise a competition data-driven method to map RBD binding sites. We find that although antibody binding sites are widely dispersed, neutralizing antibody binding is focused, with nearly all highly inhibitory mAbs (IC50 < 0.1 µg/mL) blocking receptor interaction, except for one that binds a unique epitope in the N-terminal domain. Many of these neutralizing mAbs use public V-genes and are close to germline. We dissect the structural basis of recognition for this large panel of antibodies through X-ray crystallography and cryoelectron microscopy of 19 Fab-antigen structures. We find novel binding modes for some potently inhibitory antibodies and demonstrate that strongly neutralizing mAbs protect, prophylactically or therapeutically, in animal models.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Binding Sites, Antibody , CHO Cells , Chlorocebus aethiops , Cricetulus , Epitopes , Female , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , Models, Molecular , Protein Binding , Protein Structure, Tertiary , SARS-CoV-2/immunology , Vero Cells
4.
Cell ; 184(8): 2201-2211.e7, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33743891

ABSTRACT

SARS-CoV-2 has caused over 2 million deaths in little over a year. Vaccines are being deployed at scale, aiming to generate responses against the virus spike. The scale of the pandemic and error-prone virus replication is leading to the appearance of mutant viruses and potentially escape from antibody responses. Variant B.1.1.7, now dominant in the UK, with increased transmission, harbors 9 amino acid changes in the spike, including N501Y in the ACE2 interacting surface. We examine the ability of B.1.1.7 to evade antibody responses elicited by natural SARS-CoV-2 infection or vaccination. We map the impact of N501Y by structure/function analysis of a large panel of well-characterized monoclonal antibodies. B.1.1.7 is harder to neutralize than parental virus, compromising neutralization by some members of a major class of public antibodies through light-chain contacts with residue 501. However, widespread escape from monoclonal antibodies or antibody responses generated by natural infection or vaccination was not observed.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , CHO Cells , COVID-19/epidemiology , Chlorocebus aethiops , Cricetulus , HEK293 Cells , Humans , Pandemics , Protein Binding , Structure-Activity Relationship , Vero Cells
5.
Cell ; 184(11): 2939-2954.e9, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33852911

ABSTRACT

Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations, including P.1 from Brazil, B.1.351 from South Africa, and B.1.1.7 from the UK (12, 10, and 9 changes in the spike, respectively). All have mutations in the ACE2 binding site, with P.1 and B.1.351 having a virtually identical triplet (E484K, K417N/T, and N501Y), which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine-induced antibody responses than B.1.351, suggesting that changes outside the receptor-binding domain (RBD) impact neutralization. Monoclonal antibody (mAb) 222 neutralizes all three variants despite interacting with two of the ACE2-binding site mutations. We explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Binding Sites , COVID-19/therapy , COVID-19/virology , Cell Line , Humans , Immune Evasion , Immunization, Passive , Mutation , Protein Binding , Protein Domains , SARS-CoV-2/genetics , Sequence Deletion , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines/immunology , COVID-19 Serotherapy
6.
J Hepatol ; 77(2): 344-352, 2022 08.
Article in English | MEDLINE | ID: mdl-35259470

ABSTRACT

BACKGROUND & AIMS: Beyond the classical description of eosinophil functions in parasite infections and allergic diseases, emerging evidence supports a critical role of eosinophils in resolving inflammation and promoting tissue remodeling. However, the role of eosinophils in liver injury and the underlying mechanism of their recruitment into the liver remain unclear. METHODS: Hepatic eosinophils were detected and quantified using flow cytometry and immunohistochemical staining. Eosinophil-deficient (ΔdblGata1) mice were used to investigate the role of eosinophils in 3 models of acute liver injury. In vivo experiments using Il33-/- mice and macrophage-depleted mice, as well as in vitro cultures of eosinophils and macrophages, were performed to interrogate the mechanism of eotaxin-2 (CCL24) production. RESULTS: Hepatic accumulation of eosinophils was observed in patients with acetaminophen (APAP)-induced liver failure, whereas few eosinophils were detectable in healthy liver tissues. In mice treated with APAP, carbon tetrachloride or concanavalin A, eosinophils were recruited into the liver and played a profound protective role. Mice deficient of macrophages or IL-33 exhibited impaired hepatic eosinophil recruitment during acute liver injury. CCL24, but not CCL11, was increased after treatment of each hepatotoxin in an IL-33 and macrophage-dependent manner. In vitro experiments demonstrated that IL-33, by stimulating IL-4 release from eosinophils, promoted the production of CCL24 by macrophages. CONCLUSIONS: This is the first study to demonstrate that hepatic recruitment of and protection by eosinophils occur commonly in various models of acute liver injury. Our findings support further exploration of eosinophils as a therapeutic target to treat APAP-induced acute liver injury. LAY SUMMARY: The current study unveils that eosinophils are recruited into the liver and play a protective function during acute liver injury caused by acetaminophen overdose. The data demonstrate that IL-33-activated eosinophils trigger macrophages to release high amounts of CCL24, which promotes hepatic eosinophil recruitment. Our findings suggest that eosinophils could be an effective cell-based therapy for the treatment of acetaminophen-induced acute liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury , Eosinophils , Acetaminophen/toxicity , Animals , Interleukin-33/pharmacology , Liver , Macrophages , Mice
7.
J Chem Ecol ; 48(3): 289-301, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34762208

ABSTRACT

The coconut rhinoceros beetle, Oryctes rhinoceros (Linnaeus 1758) (Coleoptera: Scarabaeidae: Dynastinae) (CRB), is endemic to tropical Asia where it damages both coconut and oil palm. A new invasion by CRB occurred on Guam in 2007 and eradication attempts failed using commonly applied Oryctes rhinoceros nudivirus (OrNV) isolates. This and subsequent invasive outbreaks were found to have been caused by a previously unrecognized haplotype, CRB-G, which appeared to be tolerant to OrNV. The male-produced aggregation pheromone of the endemic, susceptible strain of O. rhinoceros (CRB-S) was previously identified as ethyl 4-methyloctanoate. Following reports from growers that commercial lures containing this compound were not attractive to CRB-G, the aim of this work was to identify the pheromone of CRB-G. Initial collections of volatiles from virgin male and female CRB-G adults from the Solomon Islands failed to show any male- or female-specific compounds as candidate pheromone components. Only after five months were significant quantities of ethyl 4-methyloctanoate and 4-methyloctanoic acid produced by males but not by females. No other male-specific compounds could be detected, in particular methyl 4-methyloctanoate, 4-methyl-1-octanol, or 4-methyl-1-octyl acetate, compounds identified in volatiles from some other species of Oryctes. Ethyl 4-methyloctanoate elicited a strong electroantennogram response from both male and female CRB-G, but these other compounds, including 4-methyloctanoic acid, did not. The enantiomers of ethyl 4-methyloctanoate and 4-methyloctanoic acid were conveniently prepared by enzymatic resolution of the commercially-available acid, and the enantiomers of the acid, but not the ester, could be separated by gas chromatography on an enantioselective cyclodextrin phase. Using this approach, both ethyl 4-methyloctanoate and 4-methyloctanoic acid produced by male CRB-G were shown to be exclusively the (R)-enantiomers whereas previous reports had suggested male O. rhinoceros produced the (S)-enantiomers. However, re-examination of the ester and acid produced by male CRB-S from Papua New Guinea showed that these were also the (R)-enantiomers. In field trapping experiments carried out in the Solomon Islands, both racemic and ethyl (R)-4-methyloctanoate were highly attractive to both male and female CRB-G beetles. The (S)-enantiomer and the corresponding acids were only weakly attractive. The addition of racemic 4-methyloctanoic acid to ethyl 4-methyloctanoate did significantly increase attractiveness, but the addition of (R)- or (S)-4-methyloctanoic acid to the corresponding ethyl esters did not. Possible reasons for the difference in assignment of configuration of the components of the CRB pheromone are discussed along with the practical implications of these results.


Subject(s)
Coleoptera , Animals , Coleoptera/physiology , Female , Guam , Male , Octanols , Perissodactyla , Pheromones/pharmacology
8.
J Chem Ecol ; 48(5-6): 479-490, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35771405

ABSTRACT

The canola flower midge, Contarinia brassicola Sinclair (Diptera: Cecidomyiidae), is a newly-described species that induces galls on canola, Brassica napus Linnaeus and Brassica rapa Linnaeus (Brassicaceae). Identification of the sex pheromone of C. brassicola is essential to developing monitoring tools to elucidate the geographic range and hosts of this new pest, and the extent to which it threatens the $30 billion Canadian canola industry. The aim of this study was to identify and synthesize the female-produced sex pheromone of C. brassicola and demonstrate its effectiveness in attracting males to traps in the field. Two peaks were identified through GC-EAG analysis of female-produced volatiles which elicited electrophysiological responses in male antennae. These peaks were initially characterized through GC-MS and synthesis as 2,7-diacetoxynonane (major component) and 2-acetoxynonane (minor component), and the racemic compounds elicited EAG responses in male antennae. All four stereoisomers of 2,7-diacetoxynonane were synthesized and the naturally-produced compound was shown to be primarily the (2R,7S)-isomer by analysis on an enantioselective GC column, with a small amount of (2R,7R)-2,7-diacetoxynonane also present. The configuration of the minor component could not be determined because of the small amount present, but this was assumed to be (2R)-2-acetoxynonane by comparison with the configuration of the other two components. In field trials, none of the four stereoisomers of 2,7-diacetoxynonane, presented individually or as a racemic mixture, was attractive to male C. brassicola. However, dispensers loaded with a 10 µg:1 µg blend of (2R,7S)- and (2R,7R)-2,7-diacetoxynonane caught large numbers of male C. brassicola and significantly more than other blends tested. The addition of 0.5 µg of (2R)-2-acetoxynonane to this blend further increased the number of males caught. In future work, we will seek to identify the optimum trapping protocol for the application of the pheromone in monitoring and surveillance.


Subject(s)
Brassica napus , Sex Attractants , Canada , Flowers , Pheromones , Sex Attractants/pharmacology
9.
J Nat Prod ; 85(8): 2062-2070, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35877168

ABSTRACT

The leaffooted bugs Leptoglossus zonatus and L. occidentalis (Hemiptera: Coreidae) cause substantial damage in tree nut crops in North America and pine seed orchards in North America and Europe, respectively. Sexually mature males of both species produce a number of aldehydes, esters, and sesquiterpenes, which are hypothesized to constitute an aggregation pheromone attractive to both sexes. Among the volatiles produced by males of both species, we identified a unique sesquiterpene hydrocarbon, given the common name "leptotriene" (5), which elicited strong responses from antennae of both sexes in electroantennogram assays. Here, we report its structure and its synthesis from (-)-(E)-ß-caryophyllene (1).


Subject(s)
Heteroptera , Pinus , Sesquiterpenes , Animals , Female , Male , Seeds
10.
J Chem Ecol ; 47(4-5): 394-405, 2021 May.
Article in English | MEDLINE | ID: mdl-33844148

ABSTRACT

Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae) is a tropical mirid bug used as a biocontrol agent in protected crops, including tomatoes. Although N. tenuis predates important insect pests, especially whitefly, it also causes damage by feeding on tomato plants when prey populations decline, resulting in significant economic losses for growers. The pest is now established in some all-year-round tomato crops in Europe and control measures involve the application of pesticides which are incompatible with current IPM programs. As part of future IPM strategies, the pheromone of N. tenuis was investigated. Volatile collections were made from groups and individuals of mated and unmated, females and males. In analyses of these collections by gas chromatography coupled with electroantennographic (EAG) recording from antennae of male bugs, two EAG-active components were detected and identified as 1-octanol and octyl hexanoate. Unlike other mirids, both male and female N. tenuis produced the two compounds, before and after mating, and both sexes gave EAG responses to both compounds. Furthermore, only octyl hexanoate was detected in whole body solvent washes from both sexes. These compounds are not related to the derivatives of 3-hydroxybutyrate esters found as pheromone components in other members of the Bryocrinae sub-family, and the latter could not be detected in volatiles from N. tenuis and did not elicit EAG responses. Nevertheless, experiments carried out in commercial glasshouses showed that traps baited with a blend of the synthetic pheromone components caught essentially only male N. tenuis, and significantly more than traps baited with octyl hexanoate alone. The latter caught significantly more N. tenuis than unbaited traps which generally caught very few bugs. Traps at plant height caught more N. tenuis males than traps 1 m above or at the base of the plants. The trap catches provided an indication of population levels of N. tenuis and were greatly reduced following an application of insecticide.


Subject(s)
Heteroptera/chemistry , Sex Attractants/analysis , Solanum lycopersicum/metabolism , Volatile Organic Compounds/analysis , 1-Octanol/analysis , Animals , Caproates/analysis , Female , Gas Chromatography-Mass Spectrometry , Heteroptera/metabolism , Insect Control , Male , Sexual Behavior, Animal
11.
Proc Natl Acad Sci U S A ; 115(15): E3416-E3425, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29581267

ABSTRACT

Molecular dynamics (MD) simulations of proteins reveal the existence of many transient surface pockets; however, the factors determining what small subset of these represent druggable or functionally relevant ligand binding sites, called "cryptic sites," are not understood. Here, we examine multiple X-ray structures for a set of proteins with validated cryptic sites, using the computational hot spot identification tool FTMap. The results show that cryptic sites in ligand-free structures generally have a strong binding energy hot spot very close by. As expected, regions around cryptic sites exhibit above-average flexibility, and close to 50% of the proteins studied here have unbound structures that could accommodate the ligand without clashes. Nevertheless, the strong hot spot neighboring each cryptic site is almost always exploited by the bound ligand, suggesting that binding may frequently involve an induced fit component. We additionally evaluated the structural basis for cryptic site formation, by comparing unbound to bound structures. Cryptic sites are most frequently occluded in the unbound structure by intrusion of loops (22.5%), side chains (19.4%), or in some cases entire helices (5.4%), but motions that create sites that are too open can also eliminate pockets (19.4%). The flexibility of cryptic sites frequently leads to missing side chains or loops (12%) that are particularly evident in low resolution crystal structures. An interesting observation is that cryptic sites formed solely by the movement of side chains, or of backbone segments with fewer than five residues, result only in low affinity binding sites with limited use for drug discovery.


Subject(s)
Proteins/chemistry , Binding Sites , Ligands , Molecular Dynamics Simulation , Protein Binding , Protein Conformation
12.
Biochemistry ; 59(4): 563-581, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31851823

ABSTRACT

Development of small molecule inhibitors of protein-protein interactions (PPIs) is hampered by our poor understanding of the druggability of PPI target sites. Here, we describe the combined application of alanine-scanning mutagenesis, fragment screening, and FTMap computational hot spot mapping to evaluate the energetics and druggability of the highly charged PPI interface between Kelch-like ECH-associated protein 1 (KEAP1) and nuclear factor erythroid 2 like 2 (Nrf2), an important drug target. FTMap identifies four binding energy hot spots at the active site. Only two of these are exploited by Nrf2, which alanine scanning of both proteins shows to bind primarily through E79 and E82 interacting with KEAP1 residues S363, R380, R415, R483, and S508. We identify fragment hits and obtain X-ray complex structures for three fragments via crystal soaking using a new crystal form of KEAP1. Combining these results provides a comprehensive and quantitative picture of the origins of binding energy at the interface. Our findings additionally reveal non-native interactions that might be exploited in the design of uncharged synthetic ligands to occupy the same site on KEAP1 that has evolved to bind the highly charged DEETGE binding loop of Nrf2. These include π-stacking with KEAP1 Y525 and interactions at an FTMap-identified hot spot deep in the binding site. Finally, we discuss how the complementary information provided by alanine-scanning mutagenesis, fragment screening, and computational hot spot mapping can be integrated to more comprehensively evaluate PPI druggability.


Subject(s)
Kelch-Like ECH-Associated Protein 1/chemistry , NF-E2-Related Factor 2/chemistry , Binding Sites/drug effects , Binding Sites/physiology , Drug Discovery , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Ligands , NF-E2-Related Factor 2/metabolism , Protein Binding/drug effects , Protein Binding/physiology , Protein Domains/drug effects , Protein Domains/physiology , Protein Interaction Domains and Motifs/drug effects , Small Molecule Libraries/pharmacology
13.
Drug Discov Today Technol ; 37: 83-92, 2020 Dec.
Article in English | MEDLINE | ID: mdl-34895658

ABSTRACT

A detailed understanding of the interactions between drugs and their targets is crucial to develop the best possible therapeutic agents. Structure-based drug design relies on the availability of high-resolution structures obtained primarily through X-ray crystallography. Collecting and analysing quickly a large quantity of structural data is crucial to accelerate drug discovery pipelines. Researchers from academia and industry can access the highly automated macromolecular crystallography (MX) beamlines of Diamond Light Source, the UK national synchrotron, to rapidly collect diffraction data from large numbers of crystals. With seven beamlines dedicated to MX, Diamond offers bespoke solutions for a wide variety of user requirements. Working in synergy with state-of-the-art laboratories and other life science instruments to provide an integrated offering, the MX beamlines provide innovative and multidisciplinary approaches to the determination of structures of new pharmacological targets as well as the efficient study of protein-ligand complexes.


Subject(s)
Drug Discovery , Synchrotrons , Crystallography, X-Ray , Macromolecular Substances
14.
Dev World Bioeth ; 20(3): 167-171, 2020 09.
Article in English | MEDLINE | ID: mdl-31769167

ABSTRACT

Infertility is an unpredictable but widespread condition. While high-income countries grapple with when, or how to cover the costs of assisted reproductive technology (ART), such as in-vitro fertilisation (IVF), these services are generally only available to wealthy persons at private facilities in low- and middle-income countries (LMICs). Although the principle of non-interference with normal individual reproductive rights is robust, whether it is also the responsibility of collective society to provide the means (when ART applies) to achieve pregnancy, is controversial. Recently, a low-cost model was developed at a South African public institution. The target population for this model was "helpless and marginalised, childless couples", but a new threat has arisen, namely, infertile couples who could conceivably afford private care. In the allocation of this scarce resource, we argue for a prioritarian response that first addresses the worst-off, in order to even out unequal access imposed by sharp differences in income.


Subject(s)
Health Services Accessibility , Reproductive Techniques, Assisted , Social Justice , Developing Countries , Female , Health Resources/supply & distribution , Humans , Infertility , Models, Organizational , Pregnancy , Reproductive Rights
15.
J Chem Ecol ; 45(10): 858-868, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31637564

ABSTRACT

Vine weevil, Otiorhynchus sulcatus F. (Coleoptera: Curculionidae), is an economically important pest species in many soft-fruit and ornamental crops. Economic losses arise from damage to the roots, caused by larvae, and to the leaves, caused by adults. As adults are nocturnal and larvae feed below ground, infestations can be missed initially, with controls applied too late. In the absence of a vine weevil sex or aggregation pheromone, the development of an effective semiochemical lure for better management of this pest is likely to focus on host-plant volatiles. Here, we investigate the electrophysiological and behavioral responses of adult vine weevils to volatile organic compounds (VOCs) originating from their preferred host plant Euonymus fortunei, and synthetic VOCs associated with this host when presented individually or as blends. Consistent electroantennographic responses were observed to a range of generalist VOCs. Behavioral responses of weevils to VOCs, when presented individually, were influenced by concentration. Vine weevil adults showed directional movement toward a mixture of seven plant volatiles, methyl salicylate, 1-octen-3-ol, (E)-2-hexenol, (Z)-3-hexenol, 1-hexanol, (E)-2-pentenol, and linalool, even though no, or negative, responses were recorded to each of these compounds presented individually. Similarly, vine weevils showed directional movement toward a 1:1 ratio mixture of (Z)-2-pentenol and methyl eugenol. Results presented here point to the importance of blends of generalist compounds and their concentrations in the optimization of a lure.


Subject(s)
Euonymus/chemistry , Volatile Organic Compounds/chemistry , Weevils/physiology , Animals , Behavior, Animal/drug effects , Electrophysiological Phenomena/drug effects , Euonymus/metabolism , Gas Chromatography-Mass Spectrometry , Larva/drug effects , Larva/physiology , Volatile Organic Compounds/analysis , Volatile Organic Compounds/pharmacology
16.
J Chem Ecol ; 45(8): 649-656, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31407197

ABSTRACT

Pheromone-baited traps can be excellent tools for sensitive detection of insects of conservation concern. Here, identification of the sex pheromone of Trichopteryx polycommata (Denis & Schiffermüller, 1775), an under-recorded UK priority species, is reported. In analyses of extracts of the pheromone glands of female T. polycommata by gas chromatography coupled to electroantennographic recording from the antenna of a male moth, a single active component was detected. This was identified as (Z,Z)-6,9-nonadecadiene (Z,Z6,9-19:H) by comparison of its mass spectrum and retention times with those of the synthetic standard. In a pilot field trial in Kent, UK, T. polycommata males were caught in pheromone traps baited with lures loaded with 1 mg and 2 mg (Z,Z)-6,9-19:H. Optimum lure loading was identified in a further five trials in Kent, Sussex and Lancashire where lures of 0, 0.001, 0.01, 0.1, 1, 2, 5 and 10 mg loadings were tested. Traps baited with 1 to 10 mg of ZZ6,9-19:H caught significantly more T. polycommata than traps baited with 0 mg and 0.001 mg. In a pilot survey of T. polycommata using pheromone lures around Morecambe Bay, UK, T. polycommata males were captured at 122 new sites within the three counties where trials took place, demonstrating the potential of pheromone monitoring to increase knowledge of abundance, distribution and ecology of this elusive species.


Subject(s)
Moths/physiology , Sex Attractants/chemistry , Animals , Endangered Species , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/pharmacology , Female , Gas Chromatography-Mass Spectrometry , Male , Pheromones/chemistry , Pheromones/pharmacology , Sex Attractants/pharmacology , Sexual Behavior, Animal/drug effects
17.
J Chem Ecol ; 45(10): 869-878, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31741191

ABSTRACT

Most plant species depend upon insect pollination services, including many cash and subsistence crops. Plants compete to attract those insects using visual cues and floral odor which pollinators associate with a reward. The cacao tree, Theobroma cacao, has a highly specialized floral morphology permitting pollination primarily by Ceratopogonid midges. However, these insects do not depend upon cacao flowers for their life cycle, and can use other sugar sources. To understand how floral cues mediate pollination in cacao we developed a method for rearing Ceratopogonidae through several complete lifecycles to provide material for bioassays. We carried out collection and analysis of cacao floral volatiles, and identified a bouquet made up exclusively of saturated and unsaturated, straight-chain hydrocarbons, which is unusual among floral odors. The most abundant components were tridecane, pentadecane, (Z)-7-pentadecene and (Z)-8-heptadecene with a heptadecadiene and heptadecatriene as minor components. We presented adult midges, Forcipomyia sp. (subgen. Forcipomyia), Culicoides paraensis and Dasyhelea borgmeieri, with natural and synthetic cacao flower odors in choice assays. Midges showed weak attraction to the complete natural floral odor in the assay, with no significant evidence of interspecific differences. This suggests that cacao floral volatiles play a role in pollinator behavior. Midges were not attracted to a synthetic blend of the above four major components of cacao flower odor, indicating that a more complete blend is required for attraction. Our findings indicate that cacao pollination is likely facilitated by the volatile blend released by flowers, and that the system involves a generalized odor response common to different species of Ceratopogonidae.


Subject(s)
Cacao/chemistry , Ceratopogonidae/physiology , Volatile Organic Compounds/chemistry , Animals , Cacao/metabolism , Ceratopogonidae/drug effects , Flowers/chemistry , Flowers/metabolism , Gas Chromatography-Mass Spectrometry , Pollen/chemistry , Pollen/metabolism , Pollination/drug effects , Smell , Volatile Organic Compounds/pharmacology
18.
Acta Obstet Gynecol Scand ; 98(9): 1178-1186, 2019 09.
Article in English | MEDLINE | ID: mdl-31001814

ABSTRACT

INTRODUCTION: Shock index (SI) is a predictor of hemodynamic compromise in obstetric patients. The SI threshold for action is not well understood. We aimed to evaluate SI thresholds as predictors of outcomes in obstetric patients. MATERIAL AND METHODS: We undertook a prospective cohort study at three South African hospitals of women with postpartum hemorrhage (n = 283) or maternal sepsis (n = 126). The "first" and "worst" SI following diagnosis were recorded. SI was compared with conventional vital signs as predictors of outcomes. The performance of SI <.9, SI .9-1.69 and SI ≥1.7 to predict outcomes (maternal death; Critical Care Unit admission; major procedure; hysterectomy) and hemorrhage-specific outcomes (lowest hemoglobin <70 g/l; blood transfusion ≥4 IU) were evaluated. RESULTS: "First" SI was one of two best performing vital signs for every outcome in postpartum hemorrhage and sepsis. In hemorrhage, risk of all outcomes increased with increasing "first" SI; for blood transfusion ≥4 IU odds ratio was 4.24 (95% confidence interval 1.25-14.36) for SI ≥1.7 vs SI .9-1.69. In sepsis, risk of all outcomes increased with increasing "worst" SI. Sensitivity, specificity, positive and negative predictive values of "first" SI <.9 vs SI ≥.9 for maternal death were 100.0%, 55.2%, 4.6% and 100.0%, respectively, in hemorrhage and 80.0%, 50.4%, 12.3% and 96.7%, respectively, in sepsis. CONCLUSIONS: The shock index was a consistent predictor of outcomes compared with conventional vital signs in postpartum hemorrhage and sepsis. SI <.9 performed well as a rule-out test and SI .9-1.69 and SI ≥1.7 indicated increased risk of all outcomes in both cohorts. These thresholds may alert to the need for urgent intervention and prevent maternal deaths.


Subject(s)
Postpartum Hemorrhage , Sepsis/complications , Shock/etiology , Adult , Female , Hemodynamics , Humans , Maternal Mortality , Postpartum Hemorrhage/mortality , Predictive Value of Tests , Pregnancy , Prospective Studies , Sepsis/mortality , Shock/mortality , South Africa , Vital Signs
19.
Am J Obstet Gynecol ; 219(4): 388.e1-388.e17, 2018 10.
Article in English | MEDLINE | ID: mdl-30055127

ABSTRACT

BACKGROUND: Preterm preeclampsia has a high rate of fetal death or disability. There is no treatment to slow the disease, except delivery. Preclinical studies have identified proton pump inhibitors as a possible treatment. OBJECTIVE: The purpose of this study was to examine whether esomeprazole could prolong pregnancy in women who have received a diagnosis of preterm preeclampsia. STUDY DESIGN: We performed a double-blind, randomized controlled trial at Tygerberg Hospital in South Africa. Women with preterm preeclampsia (gestational age 26 weeks+0 days to 31 weeks+6 days) were assigned randomly to 40-mg daily esomeprazole or placebo. The primary outcome was a prolongation of gestation of 5 days. Secondary outcomes were maternal and neonatal outcomes. We compared circulating markers of endothelial dysfunction that was associated with preeclampsia and performed pharmacokinetic studies. RESULTS: Between January 2016 and April 2017, we recruited 120 participants. One participant was excluded because of incorrect randomization, which left 59 participants in the esomeprazole and 60 participants in the placebo group. Median gestational age at enrolment was 29+4 weeks gestation. There were no between-group differences in median time from randomization to delivery: 11.4 days (interquartile range, 3.6-19.7 days) in the esomeprazole group and 8.3 days (interquartile range, 3.8-19.6 days) in the placebo group (3 days longer in the esomeprazole arm; 95% confidence interval, -2.9-8.8; P=.31). There were no placental abruptions in the esomeprazole group and 6 (10%) in the placebo group (P=.01, P=.14 adjusted). There were no differences in other maternal or neonatal outcomes or markers of endothelial dysfunction. Esomeprazole and its metabolites were detected in maternal blood among those treated with esomeprazole, but only trace amounts in the umbilical cord blood. CONCLUSION: Daily esomeprazole (40 mg) did not prolong gestation in pregnancies with preterm preeclampsia or decrease circulating soluble fms-like tyrosine kinase 1 concentrations. Higher levels in the maternal circulation may be needed for clinical effect.


Subject(s)
Esomeprazole/therapeutic use , Pre-Eclampsia , Premature Birth/prevention & control , Prenatal Care , Proton Pump Inhibitors/therapeutic use , Adult , Esomeprazole/administration & dosage , Female , Humans , Pregnancy , Pregnancy Trimester, Third , Proton Pump Inhibitors/administration & dosage , South Africa , Treatment Outcome , Young Adult
20.
J Comput Aided Mol Des ; 32(1): 225-230, 2018 01.
Article in English | MEDLINE | ID: mdl-29101520

ABSTRACT

Fast Fourier transform (FFT) based approaches have been successful in application to modeling of relatively rigid protein-protein complexes. Recently, we have been able to adapt the FFT methodology to treatment of flexible protein-peptide interactions. Here, we report our latest attempt to expand the capabilities of the FFT approach to treatment of flexible protein-ligand interactions in application to the D3R PL-2016-1 challenge. Based on the D3R assessment, our FFT approach in conjunction with Monte Carlo minimization off-grid refinement was among the top performing methods in the challenge. The potential advantage of our method is its ability to globally sample the protein-ligand interaction landscape, which will be explored in further applications.


Subject(s)
17-alpha-Hydroxyprogesterone/pharmacology , Calcifediol/pharmacology , Fourier Analysis , Molecular Docking Simulation , Proteins/metabolism , 17-alpha-Hydroxyprogesterone/chemistry , Binding Sites , Calcifediol/chemistry , Computer-Aided Design , Drug Design , Humans , Ligands , Monte Carlo Method , Protein Binding , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL