Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Environ Microbiol ; 26(1): e16566, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38149467

ABSTRACT

Trimming of sequencing reads is a pre-processing step that aims to discard sequence segments such as primers, adapters and low quality nucleotides that will interfere with clustering and classification steps. We evaluated the impact of trimming length of paired-end 16S and 18S rRNA amplicon reads on the ability to reconstruct the taxonomic composition and relative abundances of communities with a known composition in both even and uneven proportions. We found that maximizing read retention maximizes recall but reduces precision by increasing false positives. The presence of expected taxa was accurately predicted across broad trim length ranges but recovering original relative proportions remains a difficult challenge. We show that parameters that maximize taxonomic recovery do not simultaneously maximize relative abundance accuracy. Trim length represents one of several experimental parameters that have non-uniform impact across microbial clades, making it a difficult parameter to optimize. This study offers insights, guidelines, and helps researchers assess the significance of their decisions when trimming raw reads in a microbiome analysis based on overlapping or non-overlapping paired-end amplicons.


Subject(s)
Microbiota , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Sequence Analysis, DNA , RNA, Ribosomal, 18S , DNA Primers/genetics , High-Throughput Nucleotide Sequencing
2.
Can J Microbiol ; 70(7): 289-302, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38747604

ABSTRACT

The Grand River watershed is the largest catchment in southern Ontario. The river's northern and southern sections are influenced by agriculture, whereas central regions receive wastewater effluent and urban runoff. To characterize in-river microbial communities, as they relate to spatial and environmental factors, we conducted two same-day sampling events along the entire 300 km length of the river, representing contrasting flow seasons (high flow spring melt and low flow end of summer). Through high-throughput sequencing of 16S rRNA genes, we assessed the relationship between river microbiota and spatial and physicochemical variables. Flow season had a greater impact on communities than spatial or diel effects and profiles diverged with distance between sites under both flow conditions, but low-flow profiles exhibited higher beta diversity. High-flow profiles showed greater species richness and increased presence of soil and sediment taxa, which may relate to increased input from terrestrial sources. Total suspended solids, dissolved inorganic carbon, and distance from headwaters significantly explained microbial community variation during the low-flow event, whereas conductivity, sulfate, and nitrite were significant explanatory factors for spring melt. This study establishes a baseline for the Grand River's microbial community, serving as a foundation for modeling the microbiology of anthropogenically impacted freshwater systems affected by lotic processes.


Subject(s)
Bacteria , Microbiota , RNA, Ribosomal, 16S , Rivers , Seasons , Rivers/microbiology , Ontario , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biodiversity
3.
J Chem Inf Model ; 61(4): 1970-1980, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33848143

ABSTRACT

Single amino acid substitutions within protein structures often manifest with clinical conditions in humans. The mutation of a single amino can significantly alter protein folding and stability, or change protein dynamics to influence function. The chemical engineering field has developed a large toolset for predicting the influence of point mutations with the aim of guiding the design of improved and more stable proteins. Here, we reverse this general protocol and adapt these tools for the prediction of damaging mutations within proteins. Mutations to fumarate hydratase (FH), an enzyme of the citric acid cycle, can lead to human diseases. The inactivation of FH by mutation causes leiomyomas and renal cell carcinoma by subsequent fumarate buildup and reduction in available malate. We present a scheme for accurately predicting the clinical effects of every possible mutation in FH by adaptation to a database of characterized damaging and benign mutations. Using energy prediction tools Rosetta and FoldX coupled with molecular dynamics simulations, we accurately predict individual mutations as well as mutational hotspots with a high disruptive capability in FH. Furthermore, through dynamic analysis, we find that hinge regions of the protein can be stabilized or destabilized by mutations, with mechanistic implications for the functional ability of the enzyme. Finally, we categorize all potential mutations in FH into functional groups, predicting which known mutations in the human population are loss of function, therefore having clinical implications, and validate our findings through metabolomics data of characterized human cell lines.


Subject(s)
Kidney Neoplasms , Leiomyomatosis , Skin Neoplasms , Uterine Neoplasms , Female , Fumarate Hydratase/genetics , Humans , Mutation
4.
Microb Ecol ; 74(4): 979-989, 2017 11.
Article in English | MEDLINE | ID: mdl-28492989

ABSTRACT

Microbiota associated with mosquito vector populations impact several traits of mosquitoes, including survival, reproduction, control, and immunity against pathogens. The influence of seasonal variations and mosquito species on mosquito gut microbiota is poorly understood. We sought to determine whether the mosquito microbiota associated with immature stages of two congeners (Culex coronator and Culex nigripalpus) differ temporally and between the two species. Using high throughput 16S rRNA gene sequence analysis, we characterized bacterial and archaeal communities found in the immature stages of the two Culex mosquito species sampled over three seasons to compare the diversity of bacteria between the two species. Beta diversity analyses of the larval microbiota sequences revealed that the two Culex species differed significantly, both temporally within each species and between the two species. Bacteria in Cx. coronator larvae were dominated by Alphaproteobacteria, mainly associated with Roseoccocus and unidentified species of Rhizobiales, and two unidentified species of Cyanobacteria. In contrast, Cx. nigripalpus was dominated by Thorsellia anophelis (Gammaproteobacteria), Clostridium, an unidentified species of Ruminococcacae (Clostridiales), and additional unidentified species associated with Erysipelotrichaceae (Erysipelotrichales), Bacteroidales, and Mollicutes. Results of our study revealed both seasonal and interspecies differences in bacterial community composition associated with the immature stages of Cx. coronator and Cx. nigripalpus vector populations in Florida. These results have important implications for our understanding of the underlying factors of variations in disease transmission among seasons, susceptibility to various pesticides, and other biotic factors, including the role of the microbiota on the spread of invasive species. In addition, our results suggest close associations of certain bacteria species with each of the two Culex species that will be further targeted for their potential in the development of microbial-based control strategies.


Subject(s)
Archaea/classification , Bacteria/classification , Culex/microbiology , Gastrointestinal Microbiome , Animals , Archaea/genetics , Bacteria/genetics , Culex/growth & development , DNA, Archaeal/genetics , DNA, Bacterial/genetics , Florida , High-Throughput Nucleotide Sequencing , Introduced Species , Larva/growth & development , Larva/microbiology , Mosquito Vectors/growth & development , Mosquito Vectors/microbiology , Pupa/growth & development , Pupa/microbiology , RNA, Ribosomal, 16S/genetics , Seasons
5.
BMC Microbiol ; 15: 140, 2015 Jul 24.
Article in English | MEDLINE | ID: mdl-26205080

ABSTRACT

BACKGROUND: The native microflora associated with mosquitoes have important roles in mosquito development and vector competence. Sequencing of bacterial V3 region from 16S rRNA genes across the developmental stages of Culex mosquitoes (early and late larval instars, pupae and adults) was used to test the hypothesis that bacteria found in the larval stage of Culex are transstadially transmitted to the adult stage, and to compare the microbiomes of field-collected versus laboratory-reared mosquitoes. RESULTS: Beta diversity analysis revealed that bacterial community structure differed among three life stages (larvae, pupae and adults) of Culex tarsalis. Although only ~2% of the total number of bacterial OTUs were found in all stages, sequences from these OTUs accounted for nearly 82% of the total bacterial sequences recovered from all stages. Thorsellia (Gammaproteobacteria) was the most abundant bacterial taxon found across all developmental stages of field-collected Culex mosquitoes, but was rare in mosquitoes from laboratory-reared colonies. The proportion of Thorsellia sequences in the microbiomes of mosquito life stages varied ontogenetically with the greatest proportions recovered from the pupae of C. tarsalis and the lowest from newly emerged adults. The microbiome of field-collected late instar larvae was not influenced significantly by differences in the microbiota of the habitat due to habitat age or biopesticide treatments. The microbiome diversity was the greatest in the early instar larvae and the lowest in laboratory-reared mosquitoes. CONCLUSIONS: Bacterial communities in early instar C. tarsalis larvae were significantly more diverse when compared to late instar larvae, pupae and newly emerged adults. Some of the bacterial OTUs found in the early instar larvae were also found across developmental stages. Thorsellia dominated the bacterial communities in field-collected immature stages but occurred at much lower relative abundance in adults. Differences in microbiota observed in larval habitats did not influence bacterial community profiles of late instar larvae or adults. However, bacterial communities in laboratory-reared C. tarsalis larvae differed significantly from the field. Determining the role of Thorsellia in mosquitoes and its distribution across different species of mosquitoes warrants further investigation.


Subject(s)
Culex/growth & development , Culex/microbiology , Microbiota , Animals , Bacteria/classification , Bacteria/genetics , Cluster Analysis , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Gastrointestinal Tract/microbiology , Larva/microbiology , Molecular Sequence Data , Phylogeny , Pupa/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
6.
Appl Environ Microbiol ; 80(18): 5717-22, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25002428

ABSTRACT

Massively parallel sequencing of 16S rRNA genes enables the comparison of terrestrial, aquatic, and host-associated microbial communities with sufficient sequencing depth for robust assessments of both alpha and beta diversity. Establishing standardized protocols for the analysis of microbial communities is dependent on increasing the reproducibility of PCR-based molecular surveys by minimizing sources of methodological bias. In this study, we tested the effects of template concentration, pooling of PCR amplicons, and sample preparation/interlane sequencing on the reproducibility associated with paired-end Illumina sequencing of bacterial 16S rRNA genes. Using DNA extracts from soil and fecal samples as templates, we sequenced pooled amplicons and individual reactions for both high (5- to 10-ng) and low (0.1-ng) template concentrations. In addition, all experimental manipulations were repeated on two separate days and sequenced on two different Illumina MiSeq lanes. Although within-sample sequence profiles were highly consistent, template concentration had a significant impact on sample profile variability for most samples. Pooling of multiple PCR amplicons, sample preparation, and interlane variability did not influence sample sequence data significantly. This systematic analysis underlines the importance of optimizing template concentration in order to minimize variability in microbial-community surveys and indicates that the practice of pooling multiple PCR amplicons prior to sequencing contributes proportionally less to reducing bias in 16S rRNA gene surveys with next-generation sequencing.


Subject(s)
Bacteria/classification , Bacteria/genetics , Diagnostic Errors , High-Throughput Nucleotide Sequencing/standards , RNA, Ribosomal, 16S/genetics , Bias , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Feces/microbiology , Genes, rRNA , High-Throughput Nucleotide Sequencing/methods , Reproducibility of Results , Soil Microbiology
7.
Nat Genet ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169259

ABSTRACT

Oncogenic PIK3CA mutations generate large clones in aging human esophagus. Here we investigate the behavior of Pik3ca mutant clones in the normal esophageal epithelium of transgenic mice. Expression of a heterozygous Pik3caH1047R mutation drives clonal expansion by tilting cell fate toward proliferation. CRISPR screening and inhibitor treatment of primary esophageal keratinocytes confirmed the PI3K-mTOR pathway increased mutant cell competitive fitness. The antidiabetic drug metformin reduced mutant cell advantage in vivo and in vitro. Conversely, metabolic conditions such as type 1 diabetes or diet-induced obesity enhanced the competitive fitness of Pik3caH1047R cells. Consistently, we found a higher density of PIK3CA gain-of-function mutations in the esophagus of individuals with high body mass index compared with those with normal weight. We conclude that the metabolic environment selectively influences the evolution of the normal epithelial mutational landscape. Clinically feasible interventions to even out signaling imbalances between wild-type and mutant cells may limit the expansion of oncogenic mutants in normal tissues.

8.
Commun Biol ; 6(1): 753, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468606

ABSTRACT

Highly sensitive DNA sequencing techniques have allowed the discovery of large numbers of somatic mutations in normal tissues. Some mutations confer a competitive advantage over wild-type cells, generating expanding clones that spread through the tissue. Competition between mutant clones leads to selection. This process can be considered a large scale, in vivo screen for mutations increasing cell fitness. It follows that somatic missense mutations may offer new insights into the relationship between protein structure, function and cell fitness. We present a flexible statistical method for exploring the selection of structural features in data sets of somatic mutants. We show how this approach can evidence selection of specific structural features in key drivers in aged tissues. Finally, we show how drivers may be classified as fitness-enhancing and fitness-suppressing through different patterns of mutation enrichment. This method offers a route to understanding the mechanism of protein function through in vivo mutant selection.


Subject(s)
Clonal Evolution , Proteins , Mutation , Sequence Analysis, DNA
9.
Nat Genet ; 55(9): 1440-1447, 2023 09.
Article in English | MEDLINE | ID: mdl-37537257

ABSTRACT

The incidence of keratinocyte cancer (basal cell and squamous cell carcinomas of the skin) is 17-fold lower in Singapore than the UK1-3, despite Singapore receiving 2-3 times more ultraviolet (UV) radiation4,5. Aging skin contains somatic mutant clones from which such cancers develop6,7. We hypothesized that differences in keratinocyte cancer incidence may be reflected in the normal skin mutational landscape. Here we show that, compared to Singapore, aging facial skin from populations in the UK has a fourfold greater mutational burden, a predominant UV mutational signature, increased copy number aberrations and increased mutant TP53 selection. These features are shared by keratinocyte cancers from high-incidence and low-incidence populations8-13. In Singaporean skin, most mutations result from cell-intrinsic processes; mutant NOTCH1 and NOTCH2 are more strongly selected than in the UK. Aging skin in a high-incidence country has multiple features convergent with cancer that are not found in a low-risk country. These differences may reflect germline variation in UV-protective genes.


Subject(s)
Carcinoma, Squamous Cell , Skin Neoplasms , Humans , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Carcinoma, Squamous Cell/genetics , Keratinocytes , Ultraviolet Rays/adverse effects , Mutation
10.
Nat Genet ; 55(2): 232-245, 2023 02.
Article in English | MEDLINE | ID: mdl-36658434

ABSTRACT

NOTCH1 mutant clones occupy the majority of normal human esophagus by middle age but are comparatively rare in esophageal cancers, suggesting NOTCH1 mutations drive clonal expansion but impede carcinogenesis. Here we test this hypothesis. Sequencing NOTCH1 mutant clones in aging human esophagus reveals frequent biallelic mutations that block NOTCH1 signaling. In mouse esophagus, heterozygous Notch1 mutation confers a competitive advantage over wild-type cells, an effect enhanced by loss of the second allele. Widespread Notch1 loss alters transcription but has minimal effects on the epithelial structure and cell dynamics. In a carcinogenesis model, Notch1 mutations were less prevalent in tumors than normal epithelium. Deletion of Notch1 reduced tumor growth, an effect recapitulated by anti-NOTCH1 antibody treatment. Notch1 null tumors showed reduced proliferation. We conclude that Notch1 mutations in normal epithelium are beneficial as wild-type Notch1 favors tumor expansion. NOTCH1 blockade may have therapeutic potential in preventing esophageal squamous cancer.


Subject(s)
Esophageal Neoplasms , Animals , Humans , Mice , Middle Aged , Carcinogenesis/pathology , Epithelium/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Mutation , Receptor, Notch1/genetics
11.
J Strength Cond Res ; 26(8): 2103-12, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22814766

ABSTRACT

General flexibility is a key component of health, well-being, and general physical conditioning. Reduced flexibility has both physical and mental/emotional etiologies and can lead to musculoskeletal injuries and athletic underperformance. Few studies have tested the effectiveness of a mind-body therapy on general flexibility. The aim of this study was to investigate if Neuro Emotional Technique® (NET), a mind-body technique shown to be effective in reducing stress, can also improve general flexibility. The sit-and-reach test (SR) score was used as a measure of general flexibility. Forty-five healthy participants were recruited from the general population and assessed for their initial SR score before being randomly allocated to receive (a) two 20-minute sessions of NET (experimental group); (b) two 20-minute sessions of stretching instruction (active control group); or (c) no intervention or instruction (passive control group). After intervention, the participants were reassessed in a similar manner by the same blind assessor. The participants also answered questions about demographics, usual water and caffeine consumption, and activity level, and they completed an anxiety/mood psychometric preintervention and postintervention. The mean (SD) change in the SR score was +3.1 cm (2.5) in the NET group, +1.2 cm (2.3) in the active control group and +1.0 cm (2.6) in the passive control group. Although all the 3 groups showed some improvement, the improvement in the NET group was statistically significant when compared with that of either the passive controls (p = 0.015) or the active controls (p = 0.021). This study suggests that NET could provide an effective treatment in improving general flexibility. A larger study is required to confirm these findings and also to assess longer term effectiveness of this therapy on general flexibility.


Subject(s)
Psychophysiology/methods , Range of Motion, Articular/physiology , Adult , Exercise Therapy/methods , Exercise Therapy/psychology , Female , Humans , Male , Treatment Outcome , Young Adult
12.
R Soc Open Sci ; 8(5): 202231, 2021 May 05.
Article in English | MEDLINE | ID: mdl-34035949

ABSTRACT

A single population of progenitor cells maintains many epithelial tissues. Transgenic mouse cell tracking has frequently been used to study the growth dynamics of competing clones in these tissues. A mathematical model (the 'single-progenitor model') has been argued to reproduce the observed progenitor dynamics accurately. This requires three parameters to describe the growth dynamics observed in transgenic mouse cell tracking-a division rate, a stratification rate and the probability of dividing symmetrically. Deriving these parameters is a time intensive and complex process. We compare the alternative strategies for analysing this source of experimental data, identifying an approximate Bayesian computation-based approach as the best in terms of efficiency and appropriate error estimation. We support our findings by explicitly modelling biological variation and consider the impact of different sampling regimes. All tested solutions are made available to allow new datasets to be analysed following our workflows. Based on our findings, we make recommendations for future experimental design.

13.
J R Soc Interface ; 18(183): 20210607, 2021 10.
Article in English | MEDLINE | ID: mdl-34637643

ABSTRACT

During ageing, normal epithelial tissues progressively accumulate clones carrying mutations that increase mutant cell fitness above that of wild-type cells. Such mutants spread widely through the tissues, yet despite this cellular homeostasis and functional integrity of the epithelia are maintained. Two of the genes most commonly mutated in human skin and oesophagus are p53 and Notch1, both of which are also recurrently mutated in cancers of these tissues. From observations taken in human and mouse epithelia, we find that clones carrying p53 and Notch pathway mutations have different clone dynamics which can be explained by their different responses to local cell crowding. p53 mutant clone growth in mouse epidermis approximates a logistic curve, but feedbacks responding to local crowding are required to maintain tissue homeostasis. We go on to show that the observed ability of Notch pathway mutant cells to displace the wild-type population in the mouse oesophageal epithelium reflects a local density feedback that affects both mutant and wild-type cells equally. We then show how these distinct feedbacks are consistent with the distribution of mutations observed in human datasets and are suggestive of a putative mechanism to constrain these cancer-associated mutants.


Subject(s)
Epithelium , Receptor, Notch1 , Tumor Suppressor Protein p53 , Animals , Carcinoma, Squamous Cell , Clone Cells , Mice , Mutation , Receptor, Notch1/genetics , Tumor Suppressor Protein p53/genetics
14.
Cancer Discov ; 11(2): 340-361, 2021 02.
Article in English | MEDLINE | ID: mdl-33087317

ABSTRACT

Skin cancer risk varies substantially across the body, yet how this relates to the mutations found in normal skin is unknown. Here we mapped mutant clones in skin from high- and low-risk sites. The density of mutations varied by location. The prevalence of NOTCH1 and FAT1 mutations in forearm, trunk, and leg skin was similar to that in keratinocyte cancers. Most mutations were caused by ultraviolet light, but mutational signature analysis suggested differences in DNA-repair processes between sites. Eleven mutant genes were under positive selection, with TP53 preferentially selected in the head and FAT1 in the leg. Fine-scale mapping revealed 10% of clones had copy-number alterations. Analysis of hair follicles showed mutations in the upper follicle resembled adjacent skin, but the lower follicle was sparsely mutated. Normal skin is a dense patchwork of mutant clones arising from competitive selection that varies by location. SIGNIFICANCE: Mapping mutant clones across the body reveals normal skin is a dense patchwork of mutant cells. The variation in cancer risk between sites substantially exceeds that in mutant clone density. More generally, mutant genes cannot be assigned as cancer drivers until their prevalence in normal tissue is known.See related commentary by De Dominici and DeGregori, p. 227.This article is highlighted in the In This Issue feature, p. 211.


Subject(s)
Carcinoma, Basal Cell/genetics , Carcinoma, Squamous Cell/genetics , Skin Neoplasms/genetics , Adult , Aged , Cadherins/genetics , Carcinoma, Basal Cell/pathology , Carcinoma, Squamous Cell/pathology , Clone Cells , Female , Forearm , Humans , Leg , Male , Middle Aged , Mutation , Receptor, Notch1/genetics , Skin Neoplasms/pathology , Thorax
15.
Nat Genet ; 52(6): 604-614, 2020 06.
Article in English | MEDLINE | ID: mdl-32424351

ABSTRACT

During aging, progenitor cells acquire mutations, which may generate clones that colonize the surrounding tissue. By middle age, normal human tissues, including the esophageal epithelium (EE), become a patchwork of mutant clones. Despite their relevance for understanding aging and cancer, the processes that underpin mutational selection in normal tissues remain poorly understood. Here, we investigated this issue in the esophageal epithelium of mutagen-treated mice. Deep sequencing identified numerous mutant clones with multiple genes under positive selection, including Notch1, Notch2 and Trp53, which are also selected in human esophageal epithelium. Transgenic lineage tracing revealed strong clonal competition that evolved over time. Clone dynamics were consistent with a simple model in which the proliferative advantage conferred by positively selected mutations depends on the nature of the neighboring cells. When clones with similar competitive fitness collide, mutant cell fate reverts towards homeostasis, a constraint that explains how selection operates in normal-appearing epithelium.


Subject(s)
Esophagus/cytology , Mutation , ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/genetics , Animals , Cell Lineage , Diethylnitrosamine/toxicity , Epithelium/drug effects , Epithelium/pathology , Epithelium/physiology , Esophagus/physiology , Female , High-Throughput Nucleotide Sequencing , Male , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Transgenic , Receptor, Notch1/genetics , Receptor, Notch2/genetics , Reproducibility of Results , Tumor Suppressor Protein p53/genetics
16.
J R Soc Interface ; 16(156): 20190230, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31362624

ABSTRACT

Cancer develops from mutated cells in normal tissues. Whether somatic mutations alter normal cell dynamics is key to understanding cancer risk and guiding interventions to reduce it. An analysis of the first incomplete moment of size distributions of clones carrying cancer-associated mutations in normal human eyelid skin gives a good fit with neutral drift, arguing mutations do not affect cell fate. However, this suggestion conflicts with genetic evidence in the same dataset that argues for strong positive selection of a subset of mutations. This implies cells carrying these mutations have a competitive advantage over normal cells, leading to large clonal expansions within the tissue. In the normal epithelium, clone growth is constrained by the limited size of the proliferating compartment and competition with surrounding cells. We show that if these factors are taken into account, the first incomplete moment of the clone size distribution is unable to exclude non-neutral behaviour. Furthermore, experimental factors can make a non-neutral clone size distribution appear neutral. We validate these principles with a new experimental dataset showing that when experiments are appropriately designed, the first incomplete moment can be a useful indicator of non-neutral competition. Finally, we discuss the complex relationship between mutant clone sizes and genetic selection.


Subject(s)
Epithelial Cells , Models, Genetic , Mutation , Selection, Genetic , Clone Cells , Epidermis/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Eyelids/cytology , Eyelids/metabolism , Humans
17.
PeerJ ; 6: e6168, 2019.
Article in English | MEDLINE | ID: mdl-30643680

ABSTRACT

Although mosquito microbiota are known to influence reproduction, nutrition, disease transmission, and pesticide resistance, the relationship between host-associated microbial community composition and geographical location is poorly understood. To begin addressing this knowledge gap, we characterized microbiota associated with adult females of Culex nigripalpus mosquito vectors of Saint Louis Encephalitis and West Nile viruses sampled from three locations in Florida (Vero Beach, Palmetto Inland, and Palmetto Coast). High-throughput sequencing of PCR-amplified 16S rRNA genes demonstrated significant differences among microbial communities of mosquitoes sampled from the three locations. Mosquitoes from Vero Beach (east coast Florida) were dominated by uncultivated Asaia sp. (Alphaproteobacteria), whereas microbiota associated with mosquitoes collected from two mosquito populations at Palmetto (west coast Florida) sites were dominated by uncultured Spironema culicis (Spirochaetes), Salinisphaera hydrothermalis (Gammaproteobacteria), Spiroplasma (Mollicutes), uncultured Enterobacteriaceae, Candidatus Megaira (Alphaproteobacteria; Rickettsiae), and Zymobacter (Gammaproteobacteria). The variation in taxonomic profiles of Cx. nigripalpus gut microbial communities, especially with respect to dominating taxa, is a potentially critical factor in understanding disease transmission and mosquito susceptibility to insecticides among different mosquito populations.

19.
Science ; 362(6417): 911-917, 2018 11 23.
Article in English | MEDLINE | ID: mdl-30337457

ABSTRACT

The extent to which cells in normal tissues accumulate mutations throughout life is poorly understood. Some mutant cells expand into clones that can be detected by genome sequencing. We mapped mutant clones in normal esophageal epithelium from nine donors (age range, 20 to 75 years). Somatic mutations accumulated with age and were caused mainly by intrinsic mutational processes. We found strong positive selection of clones carrying mutations in 14 cancer genes, with tens to hundreds of clones per square centimeter. In middle-aged and elderly donors, clones with cancer-associated mutations covered much of the epithelium, with NOTCH1 and TP53 mutations affecting 12 to 80% and 2 to 37% of cells, respectively. Unexpectedly, the prevalence of NOTCH1 mutations in normal esophagus was several times higher than in esophageal cancers. These findings have implications for our understanding of cancer and aging.


Subject(s)
Aging/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophagus/pathology , Selection, Genetic , Adult , Aged , Clone Cells/pathology , Female , Humans , Male , Middle Aged , Mutation , Receptor, Notch1/genetics , Tumor Suppressor Protein p53/genetics , Young Adult
20.
mSphere ; 2(1)2017.
Article in English | MEDLINE | ID: mdl-28168223

ABSTRACT

Pollution from nutrients in aquatic habitats has been linked to increases in disease vectors, including mosquitoes and other pestiferous insects. One possibility is that changes in mosquito microbiomes are impacted by nutrient enrichments and that these changes affect various traits, including larval development, susceptibility to larval control agents, and susceptibility of the adult mosquitoes to pathogens. We tested this hypothesis using field mesocosms supplemented with low- and high-organic-nutrient regimens and then sampled microbial communities associated with the naturally colonizing Culex nigripalpus mosquito vector. By high-throughput sequencing of 16S rRNA gene sequences, we found no significant differences in overall microbial communities associated with sampled mosquitoes, despite detecting discernible differences in environmental variables, including pH, dissolved oxygen, and nutrient amendments. Nevertheless, indicator species analysis revealed that members of the Clostridiales were significantly associated with mosquitoes that originated from high-nutrient enrichments. In contrast, members of the Burkholderiales were associated with mosquitoes from the low-nutrient enrichment. High bacterial variability associated with the life stages of the C. nigripalpus was largely unaffected by levels of nutrient enrichments that impacted larval microbial resources, including bacteria, ciliates, and flagellates in the larval environments. IMPORTANCE Mosquito microbiota provide important physiological and ecological attributes to mosquitoes, including an impact on their susceptibility to pathogens, fitness, and sensitivity to mosquito control agents. Culex nigripalpus mosquito populations transmit various pathogens, including the Saint Louis and West Nile viruses, and proliferate in nutrient-rich environments, such as in wastewater treatment wetlands. Our study examined whether increases in nutrients within larval mosquito developmental habitats impact microbial communities associated with C. nigripalpus mosquitoes. We characterized the effects of organic enrichments on microbiomes associated with C. nigripalpus mosquitoes and identified potential bacterial microbiota that will be further investigated for whether they alter mosquito life history traits and for their potential role in the development of microbial-based control strategies.

SELECTION OF CITATIONS
SEARCH DETAIL