Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters

Publication year range
1.
Physiol Rev ; 102(4): 1587-1624, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35468004

ABSTRACT

Adhesion G protein-coupled receptors (AGPCRs) are a family of 33 receptors in humans exhibiting a conserved general structure but diverse expression patterns and physiological functions. The large NH2 termini characteristic of AGPCRs confer unique properties to each receptor and possess a variety of distinct domains that can bind to a diverse array of extracellular proteins and components of the extracellular matrix. The traditional view of AGPCRs, as implied by their name, is that their core function is the mediation of adhesion. In recent years, though, many surprising advances have been made regarding AGPCR signaling mechanisms, activation by mechanosensory forces, and stimulation by small-molecule ligands such as steroid hormones and bioactive lipids. Thus, a new view of AGPCRs has begun to emerge in which these receptors are seen as massive signaling platforms that are crucial for the integration of adhesive, mechanosensory, and chemical stimuli. This review article describes the recent advances that have led to this new understanding of AGPCR function and also discusses new insights into the physiological actions of these receptors as well as their roles in human disease.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Cell Adhesion , Humans , Ligands , Receptors, G-Protein-Coupled/metabolism
2.
J Biol Chem ; 298(12): 102685, 2022 12.
Article in English | MEDLINE | ID: mdl-36370845

ABSTRACT

Brain-specific angiogenesis inhibitor 1 (BAI1; also called ADGRB1 or B1) is an adhesion G protein-coupled receptor known from studies on macrophages to bind to phosphatidylserine (PS) on apoptotic cells via its N-terminal thrombospondin repeats. A separate body of work has shown that B1 regulates postsynaptic function and dendritic spine morphology via signaling pathways involving Rac and Rho. However, it is unknown if PS binding by B1 has any effect on the receptor's signaling activity. To shed light on this subject, we studied G protein-dependent signaling by B1 in the absence and presence of coexpression with the PS flippase ATP11A in human embryonic kidney 293T cells. ATP11A expression reduced the amount of PS exposed extracellularly and also strikingly reduced the signaling activity of coexpressed full-length B1 but not a truncated version of the receptor lacking the thrombospondin repeats. Further experiments with an inactive mutant of ATP11A showed that the PS flippase function of ATP11A was required for modulation of B1 signaling. In coimmunoprecipitation experiments, we made the surprising finding that ATP11A not only modulates B1 signaling but also forms complexes with B1. Parallel studies in which PS in the outer leaflet was reduced by an independent method, deletion of the gene encoding the endogenous lipid scramblase anoctamin 6 (ANO6), revealed that this manipulation also markedly reduced B1 signaling. These findings demonstrate that B1 signaling is modulated by PS exposure and suggest a model in which B1 serves as a PS sensor at synapses and in other cellular contexts.


Subject(s)
Phosphatidylserines , Signal Transduction , Humans , Phosphatidylserines/genetics , Phosphatidylserines/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/genetics , Thrombospondins/metabolism , HEK293 Cells
3.
Glia ; 71(8): 1921-1946, 2023 08.
Article in English | MEDLINE | ID: mdl-37029775

ABSTRACT

Astrocyte maturation is crucial to proper brain development and function. This maturation process includes the ramification of astrocytic morphology and the establishment of astrocytic domains. While this process has been well-studied, the mechanisms by which astrocyte maturation is initiated are not well understood. GPR37L1 is an astrocyte-specific G protein-coupled receptor (GPCR) that is predominantly expressed in mature astrocytes and has been linked to the modulation of seizure susceptibility in both humans and mice. To investigate the role of GPR37L1 in astrocyte biology, RNA-seq analyses were performed on astrocytes immunopanned from P7 Gpr37L1-/- knockout (L1KO) mouse cortex and compared to those from wild-type (WT) mouse cortex. These RNA-seq studies revealed that pathways involved in central nervous system development were altered and that L1KO cortical astrocytes express lower amounts of mature astrocytic genes compared to WT astrocytes. Immunohistochemical studies of astrocytes from L1KO mouse brain revealed that these astrocytes exhibit overall shorter total process length, and are also less complex and spaced further apart from each other in the mouse cortex. This work sheds light on how GPR37L1 regulates cellular processes involved in the control of astrocyte biology and maturation.


Subject(s)
Astrocytes , Receptors, G-Protein-Coupled , Humans , Mice , Animals , Astrocytes/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Seizures/metabolism
4.
Annu Rev Pharmacol Toxicol ; 58: 429-449, 2018 01 06.
Article in English | MEDLINE | ID: mdl-28968187

ABSTRACT

The adhesion G protein-coupled receptors (aGPCRs) are an evolutionarily ancient family of receptors that play key roles in many different physiological processes. These receptors are notable for their exceptionally long ectodomains, which span several hundred to several thousand amino acids and contain various adhesion-related domains, as well as a GPCR autoproteolysis-inducing (GAIN) domain. The GAIN domain is conserved throughout almost the entire family and undergoes autoproteolysis to cleave the receptors into two noncovalently-associated protomers. Recent studies have revealed that the signaling activity of aGPCRs is largely determined by changes in the interactions among these protomers. We review recent advances in understanding aGPCR activation mechanisms and discuss the physiological roles and pharmacological properties of aGPCRs, with an eye toward the potential utility of these receptors as drug targets.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , Animals , Drug Delivery Systems/methods , Humans , Protein Binding/drug effects , Signal Transduction/drug effects
5.
Nat Rev Mol Cell Biol ; 10(12): 819-30, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19935667

ABSTRACT

G protein-coupled receptors (GPCRs) mediate physiological responses to various ligands, such as hormones, neurotransmitters and sensory stimuli. The signalling and trafficking properties of GPCRs are often highly malleable depending on the cellular context. Such fine-tuning of GPCR function can be attributed in many cases to receptor-interacting proteins that are differentially expressed in distinct cell types. In some cases these GPCR-interacting partners directly mediate receptor signalling, whereas in other cases they act mainly as scaffolds to modulate G protein-mediated signalling. Furthermore, GPCR-interacting proteins can have a big impact on the regulation of GPCR trafficking, localization and/or pharmacological properties.


Subject(s)
Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Humans , Ligands , Protein Transport , Signal Transduction
6.
J Proteome Res ; 19(2): 744-755, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31903766

ABSTRACT

GPR37 and GPR37L1 are glia-enriched G protein-coupled receptors that have been implicated in several neurological and neurodegenerative diseases. To gain insight into the potential molecular mechanisms by which GPR37 and GPR37L1 regulate cellular physiology, proteomic analyses of whole mouse brain tissue from wild-type (WT) versus GPR37/GPR37L1 double knockout (DKO) mice were performed in order to identify proteins regulated by the absence versus presence of these receptors (data are available via ProteomeXchange with identifier PXD015202). These analyses revealed a number of proteins that were significantly increased or decreased by the absence of GPR37 and GPR37L1. One of the most decreased proteins in the DKO versus WT brain tissue was S100A5, a calcium-binding protein, and the reduction of S100A5 expression in KO brain tissue was validated via Western blot. Coexpression of S100A5 with either GPR37 or GPR37L1 in HEK293T cells did not result in any change in S100A5 expression but did robustly increase secretion of S100A5. To dissect the mechanism by which S100A5 secretion was enhanced, cells coexpressing S100A5 with the receptors were treated with different pharmacological reagents. These studies revealed that calcium is essential for the secretion of S100A5 downstream of GPR37 and GPR37L1 signaling, as treatment with BAPTA-AM, an intracellular Ca2+ chelator, reduced S100A5 secretion from transfected HEK293T cells. Collectively, these findings provide a panoramic view of proteomic changes resulting from loss of GPR37 and GPR37L1 and also impart mechanistic insight into the regulation of S100A5 by these receptors, thereby shedding light on the functions of GPR37 and GPR37L1 in brain tissue.


Subject(s)
Proteomics , Receptors, G-Protein-Coupled , Animals , Brain/metabolism , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
7.
FASEB J ; 33(10): 10680-10691, 2019 10.
Article in English | MEDLINE | ID: mdl-31268736

ABSTRACT

GPCR 37 (GPR37) is a GPCR expressed in the CNS; its physiological and pathophysiological functions are largely unknown. We tested the role of GPR37 in the ischemic brain of GPR37 knockout (KO) mice, exploring the idea that GPR37 might be protective against ischemic damage. In an ischemic stroke model, GPR37 KO mice exhibited increased infarction and cell death compared with wild-type (WT) mice, measured by 2,3,5-triphenyl-2H-tetrazolium chloride and TUNEL staining 24 h after stroke. Moreover, more severe functional deficits were detected in GPR37 KO mice in the adhesive-removal and corner tests. In the peri-infarct region of GPR37 KO mice, there was significantly more apoptotic and autophagic cell death accompanied by caspase-3 activation and attenuated mechanistic target of rapamycin signaling. GPR37 deletion attenuated astrocyte activation and astrogliosis compared with WT stroke controls 24-72 h after stroke. Immunohistochemical staining showed more ionized calcium-binding adapter molecule 1-positive cells in the ischemic cortex of GPR37 KO mice, and RT-PCR identified an enrichment of M1-type microglia or macrophage markers in the GPR37 KO ischemic cortex. Western blotting demonstrated higher levels of inflammatory factors IL-1ß, IL-6, monocyte chemoattractant protein, and macrophage inflammatory protein-1α in GPR37-KO mice after ischemia. Thus, GPR37 plays a multifaceted role after stroke, suggesting a novel target for stroke therapy.-McCrary, M. R., Jiang, M. Q., Giddens, M. M., Zhang, J. Y., Owino, S., Wei, Z. Z., Zhong, W., Gu, X., Xin, H., Hall, R. A., Wei, L., Yu, S. P. Protective effects of GPR37 via regulation of inflammation and multiple cell death pathways after ischemic stroke in mice.


Subject(s)
Brain Ischemia/physiopathology , Cell Death/physiology , Receptors, G-Protein-Coupled/physiology , Stroke/physiopathology , Animals , Apoptosis , Autophagy , Brain/metabolism , Brain/pathology , Brain Ischemia/pathology , Caspase 3/metabolism , Disease Models, Animal , Inflammation/pathology , Inflammation/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics , Sensorimotor Cortex/physiopathology , Signal Transduction , Stroke/pathology , TOR Serine-Threonine Kinases/metabolism
8.
Mol Cell ; 46(2): 226-37, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22445486

ABSTRACT

Emerging evidence indicates that membrane lipids regulate protein networking by directly interacting with protein-interaction domains (PIDs). As a pilot study to identify and functionally annodate lipid-binding PIDs on a genomic scale, we performed experimental and computational studies of PDZ domains. Characterization of 70 PDZ domains showed that ~40% had submicromolar membrane affinity. Using a computational model built from these data, we predicted the membrane-binding properties of 2,000 PDZ domains from 20 species. The accuracy of the prediction was experimentally validated for 26 PDZ domains. We also subdivided lipid-binding PDZ domains into three classes based on the interplay between membrane- and protein-binding sites. For different classes of PDZ domains, lipid binding regulates their protein interactions by different mechanisms. Functional studies of a PDZ domain protein, rhophilin 2, suggest that all classes of lipid-binding PDZ domains serve as genuine dual-specificity modules regulating protein interactions at the membrane under physiological conditions.


Subject(s)
Computer Simulation , Lipid Metabolism , Protein Interaction Domains and Motifs , Animals , Genome , Humans , Lipids/chemistry , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mice , Models, Molecular , Rats , Surface Plasmon Resonance
9.
Eur J Neurosci ; 50(5): 2801-2813, 2019 09.
Article in English | MEDLINE | ID: mdl-31063250

ABSTRACT

Designer receptors exclusively activated by designer drugs (DREADDs) are extensively used to modulate neuronal activity in rodents, but their use in primates remains limited. An essential need that remains is the demonstration that DREADDs are efficiently expressed on the plasma membrane of primate neurons. To address this issue, electron microscopy immunogold was used to determine the subcellular localization of the AAV vector-induced DREADDs hM4Di and hM3Dq fused to different tags in various brain areas of rhesus monkeys and mice. When hM4Di was fused to mCherry, the immunogold labelling was mostly confined to the intracellular space, and poorly expressed at the plasma membrane in monkey dendrites. In contrast, the hM4Di-mCherry labelling was mostly localized to the dendritic plasma membrane in mouse neurons, suggesting species differences in the plasma membrane expression of these exogenous proteins. The lack of hM4Di plasma membrane expression may limit the functional effects of systemic administration of DREADD-actuators in monkey neurons. Removing the mCherry and fusing of hM4Di with the haemagglutinin (HA) tag resulted in strong neuronal plasma membrane immunogold labelling in both monkeys and mice neurons. Finally, hM3Dq-mCherry was expressed mostly at the plasma membrane in monkey neurons, indicating that the fusion of mCherry with hM3Dq does not hamper membrane incorporation of this specific DREADD. Our results suggest that the pattern of ultrastructural expression of DREADDs in monkey neurons depends on the DREADD/tag combination. Therefore, a preliminary characterization of plasma membrane expression of specific DREADD/tag combinations is recommended when using chemogenetic approaches in primates.


Subject(s)
Brain/metabolism , Cell Membrane/metabolism , Neurons/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Dendrites/metabolism , Female , Macaca mulatta , Male , Mice
10.
J Biol Chem ; 292(23): 9711-9720, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28424266

ABSTRACT

Mutations to the adhesion G protein-coupled receptor ADGRG1 (G1; also known as GPR56) underlie the neurological disorder bilateral frontoparietal polymicrogyria. Disease-associated mutations in G1 studied to date are believed to induce complete loss of receptor function through disruption of either receptor trafficking or signaling activity. Given that N-terminal truncation of G1 and other adhesion G protein-coupled receptors has been shown to significantly increase the receptors' constitutive signaling, we examined two different bilateral frontoparietal polymicrogyria-inducing extracellular loop mutations (R565W and L640R) in the context of both full-length and N-terminally truncated (ΔNT) G1. Interestingly, we found that these mutations reduced surface expression of full-length G1 but not G1-ΔNT in HEK-293 cells. Moreover, the mutations ablated receptor-mediated activation of serum response factor luciferase, a classic measure of Gα12/13-mediated signaling, but had no effect on G1-mediated signaling to nuclear factor of activated T cells (NFAT) luciferase. Given these differential signaling results, we sought to further elucidate the pathway by which G1 can activate NFAT luciferase. We found no evidence that ΔNT activation of NFAT is dependent on Gαq/11-mediated or ß-arrestin-mediated signaling but rather involves liberation of Gßγ subunits and activation of calcium channels. These findings reveal that disease-associated mutations to the extracellular loops of G1 differentially alter receptor trafficking, depending on the presence of the N terminus, and differentially alter signaling to distinct downstream pathways.


Subject(s)
Malformations of Cortical Development/metabolism , Mutation, Missense , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Amino Acid Substitution , Cell Line , GTP-Binding Protein alpha Subunits, G12-G13/genetics , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/genetics , GTP-Binding Protein gamma Subunits/metabolism , Humans , Malformations of Cortical Development/genetics , Malformations of Cortical Development/pathology , Protein Structure, Secondary , Protein Transport/genetics , Receptors, G-Protein-Coupled/genetics , beta-Arrestin 1/genetics , beta-Arrestin 1/metabolism
11.
Pharmacol Rev ; 67(2): 338-67, 2015.
Article in English | MEDLINE | ID: mdl-25713288

ABSTRACT

The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential.


Subject(s)
Cell Adhesion Molecules/metabolism , Cyclic AMP/physiology , Models, Molecular , Receptors, G-Protein-Coupled/metabolism , Second Messenger Systems , Animals , Cell Adhesion , Cell Adhesion Molecules/chemistry , Cell Membrane/enzymology , Cell Membrane/metabolism , Cell Movement , Humans , International Agencies , Ligands , Pharmacology/trends , Pharmacology, Clinical/trends , Protein Isoforms/agonists , Protein Isoforms/chemistry , Protein Isoforms/classification , Protein Isoforms/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/classification , Signal Transduction , Societies, Scientific , Terminology as Topic
12.
Hum Mutat ; 38(12): 1751-1760, 2017 12.
Article in English | MEDLINE | ID: mdl-28891236

ABSTRACT

Mutations in G protein-coupled receptors (GPCRs) that increase constitutive signaling activity can cause human disease. A de novo C-terminal mutation (R1465W) in the adhesion GPCR BAI2 (also known as ADGRB2) was identified in a patient suffering from progressive spastic paraparesis and other neurological symptoms. In vitro studies revealed that this mutation strongly increases the constitutive signaling activity of an N-terminally cleaved form of BAI2, which represents the activated form of the receptor. Further studies dissecting the mechanism(s) underling this effect revealed that wild-type BAI2 primarily couples to Gαz , with the R1465W mutation conferring increased coupling to Gαi . The R1465W mutation also increases the total and surface expression of BAI2. The mutation has no effect on receptor binding to ß-arrestins, but does perturb binding to the endocytic protein endophilin A1, identified here as a novel interacting partner for BAI2. These studies provide new insights into the signaling capabilities of the adhesion GPCR BAI2/ADGRB2 and shed light on how an apparent gain-of-function mutation to the receptor's C-terminus may lead to human disease.


Subject(s)
Nerve Tissue Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Signal Transduction/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Substitution , Cell Line, Tumor , Female , Genes, Reporter , Humans , Middle Aged , Models, Biological , Mutation , Nerve Tissue Proteins/metabolism , Protein Binding , Protein Transport , Receptors, G-Protein-Coupled/metabolism , beta-Arrestins/genetics , beta-Arrestins/metabolism
13.
J Biol Chem ; 291(7): 3385-94, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26710850

ABSTRACT

The adhesion G protein-coupled receptors (aGPCRs) are a large yet poorly understood family of seven-transmembrane proteins. A defining characteristic of the aGPCR family is the conserved GAIN domain, which has autoproteolytic activity and can cleave the receptors near the first transmembrane domain. Several aGPCRs, including ADGRB1 (BAI1 or B1) and ADGRG1 (GPR56 or G1), have been found to exhibit significantly increased constitutive activity when truncated to mimic GAIN domain cleavage (ΔNT). Recent reports have suggested that the new N-terminal stalk, which is revealed by GAIN domain cleavage, can directly activate aGPCRs as a tethered agonist. We tested this hypothesis in studies on two distinct aGPCRs, B1 and G1, by engineering mutant receptors lacking the entire NT including the stalk (B1- and G1-SL, with "SL" indicating "stalkless"). These receptors were evaluated in a battery of signaling assays and compared with full-length wild-type and cleavage-mimicking (ΔNT) forms of the two receptors. We found that B1-SL, in multiple assays, exhibited robust signaling activity, suggesting that the membrane-proximal stalk region is not necessary for its activation. For G1, however, the results were mixed, with the SL mutant exhibiting robust activity in several signaling assays (including TGFα shedding, activation of NFAT luciferase, and ß-arrestin recruitment) but reduced activity relative to ΔNT in a distinct assay (activation of SRF luciferase). These data support a model in which the activation of certain pathways downstream of aGPCRs is stalk-dependent, whereas signaling to other pathways is stalk-independent.


Subject(s)
Angiogenic Proteins/agonists , Models, Molecular , Receptors, G-Protein-Coupled/agonists , Signal Transduction , Allosteric Regulation , Amino Acid Substitution , Angiogenic Proteins/chemistry , Angiogenic Proteins/genetics , Angiogenic Proteins/metabolism , Arrestins/chemistry , Arrestins/genetics , Arrestins/metabolism , Conserved Sequence , Genes, Reporter , HEK293 Cells , Humans , Ligands , NFATC Transcription Factors/agonists , NFATC Transcription Factors/chemistry , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Peptide Fragments/agonists , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Point Mutation , Protein Conformation , Protein Interaction Domains and Motifs , Proteolysis , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Transforming Growth Factor alpha/chemistry , Transforming Growth Factor alpha/genetics , Transforming Growth Factor alpha/metabolism , Ubiquitination , beta-Arrestins
14.
Neurobiol Dis ; 106: 181-190, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28688853

ABSTRACT

Progressive myoclonus epilepsies (PMEs) are disorders characterized by myoclonic and generalized seizures with progressive neurological deterioration. While several genetic causes for PMEs have been identified, the underlying causes remain unknown for a substantial portion of cases. Here we describe several affected individuals from a large, consanguineous family presenting with a novel PME in which symptoms begin in adolescence and result in death by early adulthood. Whole exome analyses revealed that affected individuals have a homozygous variant in GPR37L1 (c.1047G>T [Lys349Asn]), an orphan G protein-coupled receptor (GPCR) expressed predominantly in the brain. In vitro studies demonstrated that the K349N substitution in Gpr37L1 did not grossly alter receptor expression, surface trafficking or constitutive signaling in transfected cells. However, in vivo studies revealed that a complete loss of Gpr37L1 function in mice results in increased seizure susceptibility. Mice lacking the related receptor Gpr37 also exhibited an increase in seizure susceptibility, while genetic deletion of both receptors resulted in an even more dramatic increase in vulnerability to seizures. These findings provide evidence linking GPR37L1 and GPR37 to seizure etiology and demonstrate an association between a GPR37L1 variant and a novel progressive myoclonus epilepsy.


Subject(s)
Genetic Predisposition to Disease , Myoclonic Epilepsies, Progressive/metabolism , Receptors, G-Protein-Coupled/deficiency , Seizures/metabolism , Adolescent , Animals , Brain/physiopathology , Child , Female , Genetic Variation , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myoclonic Epilepsies, Progressive/genetics , NIH 3T3 Cells , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Seizures/genetics , Young Adult
15.
Addict Biol ; 21(1): 35-48, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25123018

ABSTRACT

Cocaine blocks plasma membrane monoamine transporters and increases extracellular levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT). The addictive properties of cocaine are mediated primarily by DA, while NE and 5-HT play modulatory roles. Chronic inhibition of dopamine ß-hydroxylase (DBH), which converts DA to NE, increases the aversive effects of cocaine and reduces cocaine use in humans, and produces behavioral hypersensitivity to cocaine and D2 agonism in rodents, but the underlying mechanism is unknown. We found a decrease in ß-arrestin2 (ßArr2) in the nucleus accumbens (NAc) following chronic genetic or pharmacological DBH inhibition, and overexpression of ßArr2 in the NAc normalized cocaine-induced locomotion in DBH knockout (Dbh -/-) mice. The D2/3 agonist quinpirole decreased excitability in NAc medium spiny neurons (MSNs) from control, but not Dbh -/- animals, where instead there was a trend for an excitatory effect. The Gαi inhibitor NF023 abolished the quinpirole-induced decrease in excitability in control MSNs, but had no effect in Dbh -/- MSNs, whereas the Gαs inhibitor NF449 restored the ability of quinpirole to decrease excitability in Dbh -/- MSNs, but had no effect in control MSNs. These results suggest that chronic loss of noradrenergic tone alters behavioral responses to cocaine via decreases in ßArr2 and cellular responses to D2/D3 activation, potentially via changes in D2-like receptor G-protein coupling in NAc MSNs.


Subject(s)
Arrestins/drug effects , Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Locomotion/drug effects , Neurons/drug effects , Nucleus Accumbens/drug effects , Receptors, Dopamine D2/metabolism , Animals , Arrestins/metabolism , Behavior, Animal/drug effects , Benzenesulfonates/pharmacology , Chromogranins , Dopamine Agonists/pharmacology , Dopamine beta-Hydroxylase/antagonists & inhibitors , Dopamine beta-Hydroxylase/genetics , GTP-Binding Protein alpha Subunits, Gs/antagonists & inhibitors , Mice , Mice, Knockout , Neurons/metabolism , Norepinephrine/metabolism , Nucleus Accumbens/metabolism , Quinpirole/pharmacology , Receptors, Dopamine D2/agonists , Receptors, Dopamine D3/agonists , beta-Arrestins
16.
Handb Exp Pharmacol ; 234: 127-146, 2016.
Article in English | MEDLINE | ID: mdl-27832487

ABSTRACT

The adhesion G protein-coupled receptors (aGPCRs) are a family of 33 receptors in humans that are widely expressed in various tissues and involved in many diverse biological processes. These receptors possess extremely large N-termini (NT) containing a variety of adhesion domains. A distinguishing feature of these receptors is the presence within the NT of a highly conserved GPCR autoproteolysis-inducing (GAIN) domain, which mediates autoproteolysis of the receptors into N-terminal and C-terminal fragments that stay non-covalently associated. The downstream signaling pathways and G protein-coupling preferences of many aGPCRs have recently been elucidated, and putative endogenous ligands for some aGPCRs have also been discovered and characterized in recent years. A pivotal observation for aGPCRs has been that deletion or removal of the NT up the point of GAIN cleavage results in constitutive receptor activation. For at least some aGPCRs, this activation is dependent on the unmasking of specific agonistic peptide sequences within the N-terminal stalk region (i.e., the region between the site of GAIN domain cleavage and the first transmembrane domain). However, the specific peptide sequences involved and the overall importance of the stalk region for activation can vary greatly from receptor to receptor. An emerging theme of work in this area is that aGPCRs are capable of versatile signaling activity that may be fine-tuned to suit the specific physiological roles played by the various members of this family.


Subject(s)
Cell Adhesion , Cell Membrane/metabolism , Mechanotransduction, Cellular , Receptors, G-Protein-Coupled/metabolism , Animals , Binding Sites , Cell Adhesion/drug effects , Cell Membrane/drug effects , Humans , Models, Molecular , Peptide Hydrolases/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Proteolysis , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/drug effects , Stress, Mechanical , Structure-Activity Relationship
17.
Proc Natl Acad Sci U S A ; 110(23): 9529-34, 2013 Jun 04.
Article in English | MEDLINE | ID: mdl-23690594

ABSTRACT

GPR37 (also known as Pael-R) and GPR37L1 are orphan G protein-coupled receptors that are almost exclusively expressed in the nervous system. We screened these receptors for potential activation by various orphan neuropeptides, and these screens yielded a single positive hit: prosaptide, which promoted the endocytosis of GPR37 and GPR37L1, bound to both receptors and activated signaling in a GPR37- and GPR37L1-dependent manner. Prosaptide stimulation of cells transfected with GPR37 or GPR37L1 induced the phosphorylation of ERK in a pertussis toxin-sensitive manner, stimulated (35)S-GTPγS binding, and promoted the inhibition of forskolin-stimulated cAMP production. Because prosaptide is the active fragment of the secreted neuroprotective and glioprotective factor prosaposin (also known as sulfated glycoprotein-1), we purified full-length prosaposin and found that it also stimulated GPR37 and GPR37L1 signaling. Moreover, both prosaptide and prosaposin were found to protect primary astrocytes against oxidative stress, with these protective effects being attenuated by siRNA-mediated knockdown of endogenous astrocytic GPR37 or GPR37L1. These data reveal that GPR37 and GPR37L1 are receptors for the neuroprotective and glioprotective factors prosaptide and prosaposin.


Subject(s)
Nerve Growth Factors/metabolism , Receptors, G-Protein-Coupled/metabolism , Saposins/metabolism , Animals , Astrocytes/drug effects , Blotting, Western , COS Cells , Chlorocebus aethiops , Cyclic AMP/biosynthesis , Gene Knockdown Techniques , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Nerve Growth Factors/pharmacology , Oxidative Stress/drug effects , Phosphorylation/drug effects , Polysorbates , RNA, Small Interfering/genetics , Saposins/pharmacology , Sulfur Radioisotopes/metabolism
18.
J Biol Chem ; 289(3): 1649-61, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24280223

ABSTRACT

Metabotropic glutamate receptor 1α (mGluR1α), a member of the family C G protein-coupled receptors, is emerging as a potential drug target for various disorders, including chronic neuronal degenerative diseases. In addition to being activated by glutamate, mGluR1α is also modulated by extracellular Ca(2+). However, the underlying mechanism is unknown. Moreover, it has long been challenging to develop receptor-specific agonists due to homologies within the mGluR family, and the Ca(2+)-binding site(s) on mGluR1α may provide an opportunity for receptor-selective targeting by therapeutics. In the present study, we show that our previously predicted Ca(2+)-binding site in the hinge region of mGluR1α is adjacent to the site where orthosteric agonists and antagonists bind on the extracellular domain of the receptor. Moreover, we found that extracellular Ca(2+) enhanced mGluR1α-mediated intracellular Ca(2+) responses evoked by the orthosteric agonist l-quisqualate. Conversely, extracellular Ca(2+) diminished the inhibitory effect of the mGluR1α orthosteric antagonist (S)-α-methyl-4-carboxyphenylglycine. In addition, selective positive (Ro 67-4853) and negative (7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester) allosteric modulators of mGluR1α potentiated and inhibited responses to extracellular Ca(2+), respectively, in a manner similar to their effects on the response of mGluR1α to glutamate. Mutations at residues predicted to be involved in Ca(2+) binding, including E325I, had significant effects on the modulation of responses to the orthosteric agonist l-quisqualate and the allosteric modulator Ro 67-4853 by extracellular Ca(2+). These studies reveal that binding of extracellular Ca(2+) to the predicted Ca(2+)-binding site in the extracellular domain of mGluR1α modulates not only glutamate-evoked signaling but also the actions of both orthosteric ligands and allosteric modulators on mGluR1α.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Receptors, Metabotropic Glutamate/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/genetics , Amino Acid Substitution , Benzoates , Binding Sites , Calcium Signaling/drug effects , Carbamates/pharmacology , Excitatory Amino Acid Agonists/pharmacology , Glycine/analogs & derivatives , HEK293 Cells , Humans , Mutation, Missense , Protein Structure, Tertiary , Quisqualic Acid/pharmacology , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, Metabotropic Glutamate/genetics , Xanthenes/pharmacology
19.
J Biol Chem ; 288(21): 15023-34, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23576434

ABSTRACT

The corticotropin-releasing factor (CRF) receptor 1 (CRFR1) is a target for the treatment of psychiatric diseases such as depression, schizophrenia, anxiety disorder, and bipolar disorder. The carboxyl-terminal tail of the CRFR1 terminates in a PDZ-binding motif that provides a potential site for the interaction of PSD-95/Discs Large/Zona Occludens 1 (PDZ) domain-containing proteins. In this study, we found that CRFR1 interacts with synapse-associated protein 97 (SAP97; also known as DLG1) by co-immunoprecipitation in human embryonic 293 (HEK 293) cells and cortical brain lysates and that this interaction is dependent upon an intact PDZ-binding motif at the end of the CRFR1 carboxyl-terminal tail. Similarly, we demonstrated that SAP97 is recruited to the plasma membrane in HEK 293 cells expressing CRFR1 and that mutation of the CRFR1 PDZ-binding motif results in the redistribution of SAP97 into the cytoplasm. Overexpression of SAP97 antagonized agonist-stimulated CRFR1 internalization, whereas single hairpin (shRNA) knockdown of endogenous SAP97 in HEK 293 cells resulted in increased agonist-stimulated CRFR1 endocytosis. CRFR1 was internalized as a complex with SAP97 resulting in the redistribution of SAP97 to endocytic vesicles. Overexpression or shRNA knockdown of SAP97 did not significantly affect CRFR1-mediated cAMP formation, but SAP97 knockdown did significantly attenuate CRFR1-stimulated ERK1/2 phosphorylation in a PDZ interaction-independent manner. Taken together, our studies show that SAP97 interactions with CRFR1 attenuate CRFR1 endocytosis and that SAP97 is involved in coupling G protein-coupled receptors to the activation of the ERK1/2 signaling pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Guanylate Kinases/metabolism , MAP Kinase Signaling System/physiology , Membrane Proteins/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Receptors, Corticotropin-Releasing Hormone/metabolism , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Motifs , Animals , Cell Membrane/genetics , Cell Membrane/metabolism , Discs Large Homolog 1 Protein , Endocytosis/physiology , Endosomes/genetics , Endosomes/metabolism , Guanylate Kinases/genetics , HEK293 Cells , Humans , Membrane Proteins/genetics , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Phosphorylation/physiology , Protein Transport/physiology , Rats , Receptors, Corticotropin-Releasing Hormone/genetics
20.
J Biol Chem ; 288(31): 22248-56, 2013 Aug 02.
Article in English | MEDLINE | ID: mdl-23782696

ABSTRACT

Brain-specific angiogenesis inhibitor-1 (BAI1) is an adhesion G protein-coupled receptor that has been studied primarily for its anti-angiogenic and anti-tumorigenic properties. We found that overexpression of BAI1 results in activation of the Rho pathway via a Gα(12/13)-dependent mechanism, with truncation of the BAI1 N terminus resulting in a dramatic enhancement in receptor signaling. This constitutive activity of the truncated BAI1 mutant also resulted in enhanced downstream phosphorylation of ERK as well as increased receptor association with ß-arrestin2 and increased ubiquitination of the receptor. To gain insights into the regulation of BAI1 signaling, we screened the C terminus of BAI1 against a proteomic array of PDZ domains to identify novel interacting partners. These screens revealed that the BAI1 C terminus interacts with a variety of PDZ domains from synaptic proteins, including MAGI-3. Removal of the BAI1 PDZ-binding motif resulted in attenuation of receptor signaling to Rho but had no effect on ERK activation. Conversely, co-expression with MAGI-3 was found to potentiate signaling to ERK by constitutively active BAI1 in a manner that was dependent on the PDZ-binding motif of the receptor. Biochemical fractionation studies revealed that BAI1 is highly enriched in post-synaptic density fractions, a finding consistent with our observations that BAI1 can interact with PDZ proteins known to be concentrated in the post-synaptic density. These findings demonstrate that BAI1 is a synaptic receptor that can activate both the Rho and ERK pathways, with the N-terminal and C-terminal regions of the receptor playing key roles in the regulation of BAI1 signaling activity.


Subject(s)
Angiogenic Proteins/metabolism , Post-Synaptic Density/metabolism , Signal Transduction , Angiogenic Proteins/physiology , Animals , GTP-Binding Proteins/metabolism , HEK293 Cells , Humans , Mice , PDZ Domains , Protein Binding , Receptors, G-Protein-Coupled
SELECTION OF CITATIONS
SEARCH DETAIL