Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
BMC Cancer ; 18(1): 225, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29486723

ABSTRACT

BACKGROUND: Programmed Death Ligand 1 (PD-L1) is a co-stimulatory and immune checkpoint protein. PD-L1 expression in non-small cell lung cancers (NSCLC) is a hallmark of adaptive resistance and its expression is often used to predict the outcome of Programmed Death 1 (PD-1) and PD-L1 immunotherapy treatments. However, clinical benefits do not occur in all patients and new approaches are needed to assist in selecting patients for PD-1 or PD-L1 immunotherapies. Here, we hypothesized that patient tumor cell genomics influenced cell signaling and expression of PD-L1, chemokines, and immunosuppressive molecules and these profiles could be used to predict patient clinical responses. METHODS: We used a recent dataset from NSCLC patients treated with pembrolizumab. Deleterious gene mutational profiles in patient exomes were identified and annotated into a cancer network to create NSCLC patient-specific predictive computational simulation models. Validation checks were performed on the cancer network, simulation model predictions, and PD-1 match rates between patient-specific predicted and clinical responses. RESULTS: Expression profiles of these 24 chemokines and immunosuppressive molecules were used to identify patients who would or would not respond to PD-1 immunotherapy. PD-L1 expression alone was not sufficient to predict which patients would or would not respond to PD-1 immunotherapy. Adding chemokine and immunosuppressive molecule expression profiles allowed patient models to achieve a greater than 85.0% predictive correlation among predicted and reported patient clinical responses. CONCLUSIONS: Our results suggested that chemokine and immunosuppressive molecule expression profiles can be used to accurately predict clinical responses thus differentiating among patients who would and would not benefit from PD-1 or PD-L1 immunotherapies.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , B7-H1 Antigen/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Computer Simulation , Immunotherapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Chemokines/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Models, Biological , Mutation , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction/drug effects , Treatment Outcome
2.
BMC Cancer ; 18(1): 413, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29649990

ABSTRACT

It has been highlighted that in the original manuscript [1] Table S3 'An example of the predictive computational modeling process. Specific details on an annexure section of the PD-L1 pathway show the step-by-step reactions, mechanisms, and reaction equations that occur. Such reactions also occurred in all of the other pathways' was omitted and did not appear in the Additional files and that the Additional files were miss-numbered thereafter. This Correction shows the correct and incorrect Additional files. The original article has been updated.

3.
Bioinformatics ; 30(23): 3438-9, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25123904

ABSTRACT

UNLABELLED: Cordova is an out-of-the-box solution for building and maintaining an online database of genetic variations integrated with pathogenicity prediction results from popular algorithms. Our primary motivation for developing this system is to aid researchers and clinician-scientists in determining the clinical significance of genetic variations. To achieve this goal, Cordova provides an interface to review and manually or computationally curate genetic variation data as well as share it for clinical diagnostics and the advancement of research. AVAILABILITY AND IMPLEMENTATION: Cordova is open source under the MIT license and is freely available for download at https://github.com/clcg/cordova.


Subject(s)
Databases, Nucleic Acid , Genetic Variation , Algorithms , Humans , Internet , Software
SELECTION OF CITATIONS
SEARCH DETAIL