Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
J Hepatol ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38582304

ABSTRACT

BACKGROUND & AIMS: Steatotic liver disease (SLD), characterized by elevated liver fat content (LFC), is influenced by genetics and diet. However, whether diet has a differential effect based on genetic risk is not well-characterized. We aimed to determine how genetic factors interact with diet to affect SLD in a large national biobank. METHODS: We included UK Biobank participants with dietary intake measured by 24-hour recall and genotyping. The primary predictors were dietary pattern, PNPLA3-rs738409-G, TM6SF2-rs58542926-T, a 16-variant hepatic steatosis polygenic risk score (PRS), and gene-environment interactions. The primary outcome was LFC, and secondary outcomes were iron-controlled T1 time (cT1, a measure of liver inflammation and fibrosis) and liver-related events/mortality. RESULTS: A total of 21,619 participants met inclusion criteria. In non-interaction models, Mediterranean diet and intake of fruit/vegetables/legumes and fish associated with lower LFC, while higher red/processed meat intake and all genetic predictors associated with higher LFC. In interaction models, all genetic predictors interacted with Mediterranean diet and fruit/vegetable/legume intake, while the steatosis PRS interacted with fish intake and the TM6SF2 genotype interacted with red/processed meat intake, to affect LFC. Dietary effects on LFC were up to 3.8-fold higher in PNPLA3-rs738409-GG vs. -CC individuals, and 1.4-3.0-fold higher in the top vs. bottom quartile of the steatosis PRS. Gene-diet interactions were stronger in participants with vs. without overweight. The steatosis PRS interacted with Mediterranean diet and fruit/vegetable/legume intake to affect cT1 and most dietary and genetic predictors associated with risk of liver-related events or mortality by age 70. CONCLUSIONS: Effects of diet on LFC and cT1 were markedly accentuated in patients at increased genetic risk for SLD, implying dietary interventions may be more impactful in these populations. IMPACT AND IMPLICATIONS: Genetic variants and diet both influence risk of hepatic steatosis, inflammation/fibrosis, and hepatic decompensation; however, how gene-diet interactions influence these outcomes has previously not been comprehensively characterized. We investigated this topic in the community-based UK Biobank and found that genetic risk and dietary quality interacted to influence hepatic steatosis and inflammation/fibrosis on liver MRI, so that the effects of diet were greater in people at elevated genetic risk. These results are relevant for patients and medical providers because they show that genetic risk is not fixed (i.e. modifiable factors can mitigate or exacerbate this risk) and realistic dietary changes may result in meaningful improvement in liver steatosis and inflammation/fibrosis. As genotyping becomes more routinely used in clinical practice, patients identified to be at high baseline genetic risk may benefit even more from intensive dietary counseling than those at lower risk, though future prospective studies are required.

2.
Hum Mol Genet ; 30(15): 1443-1456, 2021 07 09.
Article in English | MEDLINE | ID: mdl-33856023

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is highly correlated with metabolic disease. NAFLD results from environmental exposures acting on a susceptible polygenic background. This study performed the largest multiethnic investigation of exonic variation associated with NAFLD and correlated metabolic traits and diseases. An exome array meta-analysis was carried out among eight multiethnic population-based cohorts (n = 16 492) with computed tomography (CT) measured hepatic steatosis. A fixed effects meta-analysis identified five exome-wide significant loci (P < 5.30 × 10-7); including a novel signal near TOMM40/APOE. Joint analysis of TOMM40/APOE variants revealed the TOMM40 signal was attributed to APOE rs429358-T; APOE rs7412 was not associated with liver attenuation. Moreover, rs429358-T was associated with higher serum alanine aminotransferase, liver steatosis, cirrhosis, triglycerides and obesity; as well as, lower cholesterol and decreased risk of myocardial infarction and Alzheimer's disease (AD) in phenome-wide association analyses in the Michigan Genomics Initiative, United Kingdom Biobank and/or public datasets. These results implicate APOE in imaging-based identification of NAFLD. This association may or may not translate to nonalcoholic steatohepatitis; however, these results indicate a significant association with advanced liver disease and hepatic cirrhosis. These findings highlight allelic heterogeneity at the APOE locus and demonstrate an inverse link between NAFLD and AD at the exome level in the largest analysis to date.


Subject(s)
Apolipoproteins E/genetics , Non-alcoholic Fatty Liver Disease/genetics , Obesity/genetics , Alanine Transaminase , Alleles , Alzheimer Disease/genetics , Apolipoproteins E/metabolism , Databases, Genetic , Exome/genetics , Gene Frequency/genetics , Genome-Wide Association Study/methods , Humans , Liver , Liver Cirrhosis/genetics , Myocardial Infarction/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Phenotype , Polymorphism, Single Nucleotide/genetics , Prognosis , Risk Factors , Triglycerides
3.
Int J Mol Sci ; 22(18)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34575933

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is caused by excess lipid accumulation in hepatocytes. Genome-wide association studies have identified a strong association of NAFLD with non-synonymous E167K amino acid mutation in the transmembrane 6 superfamily member 2 (TM6SF2) protein. The E167K mutation reduces TM6SF2 stability, and its carriers display increased hepatic lipids and lower serum triglycerides. However, the effects of TM6SF2 on hepatic lipid metabolism are not completely understood. We overexpressed wild-type or E167K variant of TM6SF2 or knocked down TM6SF2 expression in lipid-treated Huh-7 cells and used untargeted lipidomic analysis, RNAseq transcriptome analysis, and fluorescent imaging to determine changes in hepatic lipid metabolism. Both TM6SF2 knockdown and E167K overexpression increased hepatic lipid accumulation, while wild-type overexpression decreased acylglyceride levels. We also observed lipid chain remodeling for acylglycerides by TM6SF2 knockdown, leading to a relative increase in species with shorter, more saturated side chains. RNA-sequencing revealed differential expression of several lipid metabolizing genes, including genes belonging to AKR1 family and lipases, primarily in cells with TM6SF2 knockdown. Taken together, our data show that overexpression of TM6SF2 gene or its loss-of-function changes hepatic lipid species composition and expression of lipid metabolizing genes. Additionally, our data further confirms a loss-of-function effect for the E167K variant.


Subject(s)
Gene Expression Regulation , Hepatocytes/metabolism , Lipid Metabolism/genetics , Membrane Proteins/genetics , Cell Line , Genotype , Humans , Metabolome , Metabolomics/methods
4.
Semin Liver Dis ; 35(4): 375-91, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26676813

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is caused by hepatic steatosis, which can progress to nonalcoholic steatohepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma in the absence of excessive alcohol consumption. Nonalcoholic fatty liver disease will become the number one cause of liver disease worldwide by 2020. Nonalcoholic fatty liver disease is correlated albeit imperfectly with obesity and other metabolic diseases such as diabetes, hyperlipidemia, and cardiovascular disease, but exactly how having one of these diseases contributes to the development of other metabolic diseases is only now being elucidated. Development of NAFLD and related metabolic diseases is genetically influenced in the population, and recent genome-wide association studies (GWASs) have discovered genetic variants that associate with these diseases. These GWAS-associated variants cannot only help us to identify individuals at high risk of developing NAFLD, but also to better understand its pathophysiology so that we can develop more effective treatments for this disease and related metabolic diseases in the future.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Non-alcoholic Fatty Liver Disease/genetics , Adaptor Proteins, Signal Transducing/genetics , Carcinoma, Hepatocellular/surgery , Genetic Predisposition to Disease , Genome-Wide Association Study , Graft Rejection/genetics , Graft Survival/genetics , Humans , Insulin Resistance/genetics , Intracellular Signaling Peptides and Proteins/genetics , Lipase/genetics , Liver Neoplasms/surgery , Liver Transplantation , Lysophospholipase/genetics , Membrane Proteins/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/surgery , Obesity/genetics , Obesity/metabolism , Polymorphism, Genetic , Protein Phosphatase 1/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics
5.
Physiol Genomics ; 46(13): 467-81, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24803679

ABSTRACT

Cancer is a complex disease; glioblastoma (GBM) is no exception. Short survival, poor prognosis, and very limited treatment options make it imperative to unravel the disease pathophysiology. The critically important identification of proteins that mediate various cellular events during disease is made possible with advancements in mass spectrometry (MS)-based proteomics. The objective of our study is to identify and characterize proteins that are differentially expressed in GBM to better understand their interactions and functions that lead to the disease condition. Further identification of upstream regulators will provide new potential therapeutic targets. We analyzed GBM tumors by SDS-PAGE fractionation with internal DNA markers followed by liquid chromatography-tandem mass spectrometry (MS). Brain tissue specimens obtained for clinical purposes during epilepsy surgeries were used as controls, and the quantification of MS data was performed by label-free spectral counting. The differentially expressed proteins were further characterized by Ingenuity Pathway Analysis (IPA) to identify protein interactions, functions, and upstream regulators. Our study identified several important proteins that are involved in GBM progression. The IPA revealed glioma activation with z score 2.236 during unbiased core analysis. Upstream regulators STAT3 and SP1 were activated and CTNNα was inhibited. We verified overexpression of several proteins by immunoblot to complement the MS data. This work represents an important step towards the identification of GBM biomarkers, which could open avenues to identify therapeutic targets for better treatment of GBM patients. The workflow developed represents a powerful and efficient method to identify biomarkers in GBM.


Subject(s)
Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Mass Spectrometry/methods , Proteomics/methods , Adult , Aged , Brain Neoplasms/chemistry , Female , Glioblastoma/chemistry , Humans , Male , Middle Aged , Staining and Labeling , Young Adult
6.
J Virol ; 87(5): 2463-74, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23236067

ABSTRACT

During infection by human cytomegalovirus (HCMV), the tumor suppressor protein p53, which promotes efficient viral gene expression, is stabilized. However, the expression of numerous p53-responsive cellular genes is not upregulated. The molecular mechanism used to manipulate the transcriptional activity of p53 during infection remains unclear. The HCMV proteins IE1, IE2, pUL44, and pUL84 likely contribute to the regulation of p53. In this study, we used a discovery-based approach to identify the protein targets of the HCMV protein pUL29/28 during infection. Previous studies have demonstrated that pUL29/28 regulates viral gene expression by interacting with the chromatin remodeling complex NuRD. Here, we observed that pUL29/28 also associates with p53, an additional deacetylase complex, and several HCMV proteins, including pUL38. We confirmed the interaction between p53 and pUL29/28 in both the presence and absence of infection. HCMV pUL29/28 with pUL38 altered the activity of the 53-regulatable p21CIP1 promoter. During infection, pUL29/28 and pUL38 contributed to the inhibition of p21CIP1 as well as caspase 1 expression. The expression of several other p53-regulating genes was not altered. Infection using a UL29-deficient virus resulted in increased p53 binding and histone H3 acetylation at the responsive promoters. Furthermore, expression of pUL29/28 and its interacting partner pUL38 contributed to an increase in the steady-state protein levels of p53. This study identified two additional HCMV proteins, pUL29/28 and pUL38, which participate in the complex regulation of p53 transcriptional activity during infection.


Subject(s)
Caspase 1/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/virology , Cytomegalovirus/physiology , Promoter Regions, Genetic , Tumor Suppressor Protein p53/metabolism , Acetylation , Capsid Proteins/metabolism , Caspase 1/biosynthesis , Cell Cycle , Cell Line , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , Cytomegalovirus Infections/metabolism , DNA-Binding Proteins/metabolism , Fibroblasts , Gene Expression Regulation , HEK293 Cells , Histones/metabolism , Humans , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Regulatory Sequences, Nucleic Acid , Transcriptional Activation , Tumor Suppressor Protein p53/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
7.
Nat Genet ; 56(2): 212-221, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38200128

ABSTRACT

Insulin resistance (IR) is a well-established risk factor for metabolic disease. The ratio of triglycerides to high-density lipoprotein cholesterol (TG:HDL-C) is a surrogate marker of IR. We conducted a genome-wide association study of the TG:HDL-C ratio in 402,398 Europeans within the UK Biobank. We identified 369 independent SNPs, of which 114 had a false discovery rate-adjusted P value < 0.05 in other genome-wide studies of IR making them high-confidence IR-associated loci. Seventy-two of these 114 loci have not been previously associated with IR. These 114 loci cluster into five groups upon phenome-wide analysis and are enriched for candidate genes important in insulin signaling, adipocyte physiology and protein metabolism. We created a polygenic-risk score from the high-confidence IR-associated loci using 51,550 European individuals in the Michigan Genomics Initiative. We identified associations with diabetes, hyperglyceridemia, hypertension, nonalcoholic fatty liver disease and ischemic heart disease. Collectively, this study provides insight into the genes, pathways, tissues and subtypes critical in IR.


Subject(s)
Insulin Resistance , Humans , Insulin Resistance/genetics , UK Biobank , Genome-Wide Association Study , Biological Specimen Banks , Insulin , Biomarkers , Cholesterol, HDL/genetics , Triglycerides/genetics
8.
J Mol Endocrinol ; 70(3)2023 04 01.
Article in English | MEDLINE | ID: mdl-36748836

ABSTRACT

Human genome-wide association studies found single-nucleotide polymorphisms (SNPs) near LYPLAL1 (Lysophospholipase-like protein 1) that have sex-specific effects on fat distribution and metabolic traits. To determine whether altering LYPLAL1 affects obesity and metabolic disease, we created and characterized a mouse knockout (KO) of Lyplal1. We fed the experimental group of mice a high-fat, high-sucrose (HFHS) diet for 23 weeks, and the controls were fed regular chow diet. Here, we show that CRISPR-Cas9 whole-body Lyplal1 KO mice fed an HFHS diet showed sex-specific differences in weight gain and fat accumulation as compared to chow diet. Female, not male, KO mice weighed less than WT mice, had reduced body fat percentage, had white fat mass, and had adipocyte diameter not accounted for by changes in the metabolic rate. Female, but not male, KO mice had increased serum triglycerides, decreased aspartate, and decreased alanine aminotransferase. Lyplal1 KO mice of both sexes have reduced liver triglycerides and steatosis. These diet-specific effects resemble the effects of SNPs near LYPLAL1 in humans, suggesting that LYPLAL1 has an evolutionary conserved sex-specific effect on adiposity. This murine model can be used to study this novel gene-by-sex-by-diet interaction to elucidate the metabolic effects of LYPLAL1 on human obesity.


Subject(s)
Genome-Wide Association Study , Lysophospholipase , Obesity , Animals , Female , Humans , Male , Mice , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics , Obesity/metabolism , Triglycerides , Lysophospholipase/genetics
9.
Nat Genet ; 55(10): 1640-1650, 2023 10.
Article in English | MEDLINE | ID: mdl-37709864

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is common and partially heritable and has no effective treatments. We carried out a genome-wide association study (GWAS) meta-analysis of imaging (n = 66,814) and diagnostic code (3,584 cases versus 621,081 controls) measured NAFLD across diverse ancestries. We identified NAFLD-associated variants at torsin family 1 member B (TOR1B), fat mass and obesity associated (FTO), cordon-bleu WH2 repeat protein like 1 (COBLL1)/growth factor receptor-bound protein 14 (GRB14), insulin receptor (INSR), sterol regulatory element-binding transcription factor 1 (SREBF1) and patatin-like phospholipase domain-containing protein 2 (PNPLA2), as well as validated NAFLD-associated variants at patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily 2 (TM6SF2), apolipoprotein E (APOE), glucokinase regulator (GCKR), tribbles homolog 1 (TRIB1), glycerol-3-phosphate acyltransferase (GPAM), mitochondrial amidoxime-reducing component 1 (MARC1), microsomal triglyceride transfer protein large subunit (MTTP), alcohol dehydrogenase 1B (ADH1B), transmembrane channel like 4 (TMC4)/membrane-bound O-acyltransferase domain containing 7 (MBOAT7) and receptor-type tyrosine-protein phosphatase δ (PTPRD). Implicated genes highlight mitochondrial, cholesterol and de novo lipogenesis as causally contributing to NAFLD predisposition. Phenome-wide association study (PheWAS) analyses suggest at least seven subtypes of NAFLD. Individuals in the top 10% and 1% of genetic risk have a 2.5-fold to 6-fold increased risk of NAFLD, cirrhosis and hepatocellular carcinoma. These genetic variants identify subtypes of NAFLD, improve estimates of disease risk and can guide the development of targeted therapeutics.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , Genome-Wide Association Study , Liver Cirrhosis/genetics , Acyltransferases/genetics , Acyltransferases/metabolism , Phospholipases/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Liver/metabolism , Protein Serine-Threonine Kinases/genetics , Intracellular Signaling Peptides and Proteins/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
10.
Physiol Genomics ; 44(17): 829-42, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22805345

ABSTRACT

The renal medullary thick ascending limb (mTAL) of the Dahl salt-sensitive (SS) rat is the site of enhanced NaCl reabsorption and excess superoxide production. In the present studies we isolated mitochondria from mTAL of SS and salt-resistant control strain SS.13(BN) rats on 0.4 and 8% salt diet for 7 days and performed a proteomic analysis. Purity of mTAL and mitochondria isolations exceeded 93.6 and 55%, respectively. Using LC/MS spectral analysis techniques we identified 96 mitochondrial proteins in four biological mTAL mitochondria samples, run in duplicate, as defined by proteins with a false discovery rate <5% and scan count ≥2. Seven of these 96 proteins, including IDH2, ACADM, SCOT, Hsp60, ATPA, EFTu, and VDAC2 were differentially expressed between the two rat strains. Oxygen consumption and high-resolution respirometry analyses showed that mTAL cells and the mitochondria in the outer medulla of SS rats fed high-salt diet exhibited lower rates of oxygen utilization compared with those from SS.13(BN) rats. These studies advance the conventional proteomic paradigm of focusing exclusively upon whole tissue homogenates to a focus upon a single cell type and specific subcellular organelle. The results reveal the importance of a largely unexplored role for deficiencies of mTAL mitochondrial metabolism and oxygen utilization in salt-induced hypertension and renal medullary oxidative stress.


Subject(s)
Loop of Henle/metabolism , Mitochondrial Proteins/metabolism , Oxygen Consumption/physiology , Proteomics/methods , Rats, Inbred Dahl/metabolism , Animals , Blotting, Western , Chromatography, Liquid , Isocitrate Dehydrogenase/metabolism , Loop of Henle/physiology , Mass Spectrometry , Microscopy, Fluorescence , Mitochondrial Proteins/genetics , Rats , Rats, Inbred Dahl/genetics , Rats, Inbred Dahl/physiology
11.
Proteomics ; 11(6): 1058-63, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21365761

ABSTRACT

A major challenge in the field of high-throughput proteomics is the conversion of the large volume of experimental data that is generated into biological knowledge. Typically, proteomics experiments involve the combination and comparison of multiple data sets and the analysis and annotation of these combined results. Although there are some commercial applications that provide some of these functions, there is a need for a free, open source, multifunction tool for advanced proteomics data analysis. We have developed the Visualize program that provides users with the abilities to visualize, analyze, and annotate proteomics data; combine data from multiple runs, and quantitate differences between individual runs and combined data sets. Visualize is licensed under GNU GPL and can be downloaded from http://proteomics.mcw.edu/visualize. It is available as compiled client-based executable files for both Windows and Mac OS X platforms as well as PERL source code.


Subject(s)
Proteomics/statistics & numerical data , Software , Algorithms , Amino Acid Sequence , Computational Biology , Computer Simulation , Data Interpretation, Statistical , Databases, Protein/statistics & numerical data , Humans , Mass Spectrometry/statistics & numerical data , Protein Array Analysis/statistics & numerical data , Proteins/chemistry , Proteins/isolation & purification
12.
Anal Biochem ; 418(2): 197-203, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21855524

ABSTRACT

Phosphorylation has been the most studied of all the posttranslational modifications of proteins. Mass spectrometry has emerged as a powerful tool for phosphomapping on proteins/peptides. Collision-induced dissociation (CID) of phosphopeptides leads to the loss of phosphoric or metaphosphoric acid as a neutral molecule, giving an intense neutral loss product ion in the mass spectrum. Dissociation of the neutral loss product ion identifies peptide sequence. This method of data-dependent constant neutral loss (DDNL) scanning analysis has been commonly used for mapping phosphopeptides. However, preferential losses of groups other than phosphate are frequently observed during CID of phosphopeptides. Ions that result from such losses are not identified during DDNL analysis due to predetermined scanning for phosphate loss. In this study, we describe an alternative approach for improved identification of phosphopeptides by sequential abundant ion fragmentation analysis (SAIFA). In this approach, there is no predetermined neutral loss molecule, thereby undergoing sequential fragmentation of abundant peak, irrespective of the moiety lost during CID. In addition to improved phosphomapping, the method increases the sequence coverage of the proteins identified, thereby increasing the confidence of protein identification. To the best of our knowledge, this is the first report to use SAIFA for phosphopeptide identification.


Subject(s)
Caseins/chemistry , Ions/chemistry , Mass Spectrometry/methods , Phosphopeptides/analysis , Proteomics/methods , Amino Acid Sequence , Phosphopeptides/chemistry , Protein Processing, Post-Translational
13.
Nat Commun ; 12(1): 816, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33547301

ABSTRACT

Serum liver enzyme concentrations are the most frequently-used laboratory markers of liver disease, a major cause of mortality. We conduct a meta-analysis of genome-wide association studies of liver enzymes from UK BioBank and BioBank Japan. We identified 160 previously-unreported independent alanine aminotransferase, 190 aspartate aminotransferase, and 199 alkaline phosphatase genome-wide significant associations, with some affecting multiple different enzymes. Associated variants implicate genes that demonstrate diverse liver cell type expression and promote a range of metabolic and liver diseases. These findings provide insight into the pathophysiology of liver and other metabolic diseases that are associated with serum liver enzyme concentrations.


Subject(s)
Alanine Transaminase/genetics , Alkaline Phosphatase/genetics , Aspartate Aminotransferases/genetics , Genome, Human , Liver Diseases/genetics , Liver/enzymology , Alanine Transaminase/blood , Alkaline Phosphatase/blood , Aspartate Aminotransferases/blood , Biological Specimen Banks , Endothelial Cells/enzymology , Endothelial Cells/pathology , Gene Expression Regulation , Genome-Wide Association Study , Hepatocytes/enzymology , Hepatocytes/pathology , Humans , Japan , Killer Cells, Natural/enzymology , Killer Cells, Natural/pathology , Kupffer Cells/enzymology , Kupffer Cells/pathology , Liver/pathology , Liver Diseases/blood , Liver Diseases/classification , Liver Diseases/pathology , Quantitative Trait Loci , Quantitative Trait, Heritable , Single-Cell Analysis , United Kingdom
14.
J Clin Endocrinol Metab ; 106(2): 372-387, 2021 01 23.
Article in English | MEDLINE | ID: mdl-33231259

ABSTRACT

CONTEXT: Glycogen storage diseases are rare. Increased glycogen in the liver results in increased attenuation. OBJECTIVE: Investigate the association and function of a noncoding region associated with liver attenuation but not histologic nonalcoholic fatty liver disease. DESIGN: Genetics of Obesity-associated Liver Disease Consortium. SETTING: Population-based. MAIN OUTCOME: Computed tomography measured liver attenuation. RESULTS: Carriers of rs4841132-A (frequency 2%-19%) do not show increased hepatic steatosis; they have increased liver attenuation indicative of increased glycogen deposition. rs4841132 falls in a noncoding RNA LOC157273 ~190 kb upstream of PPP1R3B. We demonstrate that rs4841132-A increases PPP1R3B through a cis genetic effect. Using CRISPR/Cas9 we engineered a 105-bp deletion including rs4841132-A in human hepatocarcinoma cells that increases PPP1R3B, decreases LOC157273, and increases glycogen perfectly mirroring the human disease. Overexpression of PPP1R3B or knockdown of LOC157273 increased glycogen but did not result in decreased LOC157273 or increased PPP1R3B, respectively, suggesting that the effects may not all occur via affecting RNA levels. Based on electronic health record (EHR) data, rs4841132-A associates with all components of the metabolic syndrome (MetS). However, rs4841132-A associated with decreased low-density lipoprotein (LDL) cholesterol and risk for myocardial infarction (MI). A metabolic signature for rs4841132-A includes increased glycine, lactate, triglycerides, and decreased acetoacetate and beta-hydroxybutyrate. CONCLUSIONS: These results show that rs4841132-A promotes a hepatic glycogen storage disease by increasing PPP1R3B and decreasing LOC157273. rs4841132-A promotes glycogen accumulation and development of MetS but lowers LDL cholesterol and risk for MI. These results suggest that elevated hepatic glycogen is one cause of MetS that does not invariably promote MI.


Subject(s)
Glycogen Storage Disease/etiology , Liver Glycogen/metabolism , Metabolic Syndrome/etiology , Myocardial Infarction/prevention & control , Polymorphism, Single Nucleotide , Protein Phosphatase 1/genetics , Adult , Aged , Biomarkers/analysis , Female , Follow-Up Studies , Glycogen Storage Disease/metabolism , Glycogen Storage Disease/pathology , Humans , Male , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Middle Aged , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Prognosis , Prospective Studies
15.
Proteomics ; 10(7): 1408-15, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20104619

ABSTRACT

We report a new quantitative proteomics approach that combines the best aspects of stable isotope labeling of amino acids in cell culture (SILAC) labeling and spectral counting. The SILAC peptide count ratio analysis (SPeCtRA, http://proteomics.mcw.edu/visualize) method relies on MS(2) spectra rather than ion chromatograms for quantitation and therefore does not require the use of high mass accuracy mass spectrometers. The inclusion of a stable isotope label allows the samples to be combined before sample preparation and analysis, thus avoiding many of the sources of variability that can plague spectral counting. To validate the SPeCtRA method, we have analyzed samples constructed with known ratios of protein abundance. Finally, we used SPeCtRA to compare endothelial cell protein abundances between high (20 mM) and low (11 mM) glucose culture conditions. Our results demonstrate that SPeCtRA is a protein quantification technique that is accurate and sensitive as well as easy to automate and apply to high-throughput analysis of complex biological samples.


Subject(s)
Isotope Labeling/methods , Proteomics/methods , Tandem Mass Spectrometry/methods , Amino Acids/metabolism , Animals , Cells, Cultured , Databases, Protein , Endothelial Cells , Glucose/metabolism , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results
16.
J Urol ; 184(2): 709-14, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20639044

ABSTRACT

PURPOSE: Ureteropelvic junction obstruction may either worsen and require surgery, improve or remain stable. It may take upward of 3 years for the natural history to unfold. Urinary proteome analysis using capillary electrophoresis mass spectrometry has been shown to differentiate between normal infants and those with ureteropelvic junction obstruction. We sought to confirm these findings using liquid chromatography/nano-spray mass spectrometry to examine the urinary proteome in patients with unilateral grade IV ureteropelvic junction obstruction compared to age matched healthy infants. MATERIALS AND METHODS: Urine specimens were obtained from 21 healthy infants with normal maternal/fetal ultrasound and 25 infants with grade IV unilateral ureteropelvic junction obstruction. Specimens were prepared using standard methods and subjected to liquid chromatography/tandem mass spectrometry analysis. Normalized data were annotated using the IPA(R) knowledge platform. RESULTS: There were 31 proteins significantly different in their level of abundance at 1 to 6 months, and 18 at 7 to 12 months compared to age matched controls. These proteins clustered into major functional networks. All of the biomarkers previously reported in clinical studies of ureteropelvic junction obstruction were observed with the notable exception of transforming growth factor-beta1. CONCLUSIONS: These results confirm the presence of significant differences in the urinary proteome in unilateral ureteropelvic junction obstruction compared to age matched normal individuals. This study adds new information about levels of abundance of specific proteins and peptides in ureteropelvic junction obstruction, which may allow for better classification of disease subgroups and help to establish improved indications for the early selection of surgical candidates based on urinary protein biomarkers.


Subject(s)
Kidney Pelvis , Proteome , Ureteral Obstruction/urine , Biomarkers/urine , Female , Humans , Infant, Newborn , Male , Pilot Projects
17.
Biochem Biophys Res Commun ; 385(2): 143-7, 2009 Jul 24.
Article in English | MEDLINE | ID: mdl-19442649

ABSTRACT

GTP cyclohydrolase I (GCH-1) is the rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin, an essential cofactor for nitric oxide synthase and aromatic amino acid hydroxylase. To explore the interactome of GCH-1, we established a HEK 293 cell line stably expressing tetracycline-inducible FLAG-GCH-1. FLAG-GCH-1 and associated proteins were immunoprecipitated and analyzed by liquid chromatography/tandem mass spectrometry. Twenty-nine proteins, derived from different subcellular components such as cytosol, membranes, nucleus and mitochondria were identified to interact with GCH-1. Cell fractionation studies also showed that GCH-1 was present in the cytosol, membranes and nucleus. Gene ontology analysis revealed that GCH-1 interactome was involved in a variety of biological processes such as signal transduction, apoptosis, metabolism, transport and cell organization. To our knowledge, this study is the first to provide a comprehensive analysis of the GCH-1 interactome. Findings expand the number and diversity of proteins that are known to associate with GCH-1.


Subject(s)
GTP Cyclohydrolase/metabolism , Cell Fractionation , Cell Line , Cell Nucleus/enzymology , Chromatography, Liquid , Cytosol/enzymology , GTP Cyclohydrolase/genetics , Humans , Mitochondria/enzymology , Proteins/genetics , Proteins/metabolism , Tandem Mass Spectrometry
18.
Methods Mol Biol ; 527: 283-98, ix, 2009.
Article in English | MEDLINE | ID: mdl-19241021

ABSTRACT

Protein modifications such as phosphorylation are often studied by two-dimensional gel electrophoresis, since the perturbation in the protein's pI value is readily detected by this method. It is important to be able to calculate the changes in the pI values that specific post-translational modifications cause and to visualize how these changes will effect protein migration on 2D gels. To address this need, we have developed ProMoST. ProMoST is a freely accessible Web-based application that calculates and displays the mass and pI values for either proteins in the NCBI database identified by accession number or from submitted FASTA format sequence.


Subject(s)
Image Processing, Computer-Assisted/methods , Molecular Weight , Phosphoproteins/analysis , Phosphoproteins/chemistry , Software , Algorithms , Animals , Computational Biology/methods , Electrophoresis, Gel, Two-Dimensional/methods , Humans , Isoelectric Point , Mutation/physiology , Phosphoproteins/metabolism , Protein Processing, Post-Translational
19.
Hepatol Commun ; 3(8): 1073-1084, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31388628

ABSTRACT

Up to 25% of patients with nonalcoholic fatty liver disease (NAFLD) are not obese but may have a fat or muscle composition that predisposes them to NAFLD. Our aim was to determine whether body composition parameters associate with NAFLD and to identify genetic contributors to this association. This study included two cohorts. The first included 2,249 participants from the Framingham Heart Study who underwent a computed tomography scan to evaluate hepatic steatosis, dual-energy x-ray absorptiometry testing to assess body composition, and clinical examination. Body composition parameters were normalized to total body weight. A subset of participants underwent genotyping with an Affymetrix 550K single-nucleotide polymorphism array. The second cohort, Michigan Genomics Initiative, included 19,239 individuals with genotyping on the Illumina HumanCoreExome v.12.1 array and full electronic health record data. Using sex-stratified multivariable linear regression, greater central body fat associated with increased hepatic steatosis while greater lower extremity body fat associated with decreased hepatic steatosis. Greater appendicular lean mass was associated with decreased hepatic steatosis in men but not in women. A polygenic risk score for lipodystrophy (regional or global loss of adipose tissue) was associated with increased hepatic steatosis, increased liver fibrosis, and decreased lower extremity fat mass. Conclusion: Greater central body fat associated with increased hepatic steatosis, while greater lower extremity body fat and, in men, greater appendicular lean mass were associated with decreased hepatic steatosis. A genetic risk score for lipodystrophy was associated with NAFLD and liver fibrosis. Our results suggest that buffering of excess energy by peripheral fat and muscle may protect against NAFLD and liver fibrosis in the general population.

20.
Hepatol Commun ; 3(7): 894-907, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31334442

ABSTRACT

The accumulation of excess fat in the liver (hepatic steatosis) in the absence of heavy alcohol consumption causes nonalcoholic fatty liver disease (NAFLD), which has become a global epidemic. Identifying metabolic risk factors that interact with the genetic risk of NAFLD is important for reducing disease burden. We tested whether serum glucose, insulin, insulin resistance, triglyceride (TG), low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, body mass index (BMI), and waist-to-hip ratio adjusted for BMI interact with genetic variants in or near the patatin-like phospholipase domain containing 3 (PNPLA3) gene, the glucokinase regulatory protein (GCKR) gene, the neurocan/transmembrane 6 superfamily member 2 (NCAN/TM6SF2) gene, and the lysophospholipase-like 1 (LYPLAL1) gene to exacerbate hepatic steatosis, estimated by liver attenuation. We performed association analyses in 10 population-based cohorts separately and then meta-analyzed results in up to 14,751 individuals (11,870 of European ancestry and 2,881 of African ancestry). We found that PNPLA3-rs738409 significantly interacted with insulin, insulin resistance, BMI, glucose, and TG to increase hepatic steatosis in nondiabetic individuals carrying the G allele. Additionally, GCKR-rs780094 significantly interacted with insulin, insulin resistance, and TG. Conditional analyses using the two largest European ancestry cohorts in the study showed that insulin levels accounted for most of the interaction of PNPLA3-rs738409 with BMI, glucose, and TG in nondiabetic individuals. Insulin, PNPLA3-rs738409, and their interaction accounted for at least 8% of the variance in hepatic steatosis in these two cohorts. Conclusion: Insulin resistance, either directly or through the resultant elevated insulin levels, more than other metabolic traits, appears to amplify the PNPLA3-rs738409-G genetic risk for hepatic steatosis. Improving insulin resistance in nondiabetic individuals carrying PNPLA3-rs738409-G may preferentially decrease hepatic steatosis.

SELECTION OF CITATIONS
SEARCH DETAIL