Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Pediatr Res ; 94(2): 676-682, 2023 08.
Article in English | MEDLINE | ID: mdl-36759749

ABSTRACT

BACKGROUND: Despite a growing understanding of bronchopulmonary dysplasia (BPD) and advances in management, BPD rates remain stable. There is mounting evidence that BPD may be due to a systemic insult, such as acute kidney injury (AKI). Our hypothesis was that severe AKI would be associated with BPD. METHODS: We conducted a secondary analysis of premature infants [24-27 weeks gestation] in the Recombinant Erythropoietin for Protection of Infant Renal Disease cohort (N = 885). We evaluated the composite outcome of Grade 2/3 BPD or death using generalized estimating equations. In an exploratory analysis, urinary biomarkers of angiogenesis (ANG1, ANG2, EPO, PIGF, TIE2, FGF, and VEGFA/D) were analyzed. RESULTS: 594 (67.1%) of infants had the primary composite outcome of Grade 2/3 BPD or death. Infants with AKI (aOR: 1.69, 95% CI: 1.16-2.46) and severe AKI (aOR: 2.05, 95% CI: 1.19-3.54). had increased risk of the composite outcome after multivariable adjustment Among 106 infants with urinary biomarkers assessed, three biomarkers (VEGFA, VEGFD, and TIE2) had AUC > 0.60 to predict BPD. CONCLUSIONS: Infants with AKI had a higher likelihood of developing BPD/death, with the strongest relationship seen in those with more severe AKI. Three urinary biomarkers of angiogenesis may have potential to predict BPD development. IMPACT: AKI is associated with lung disease in extremely premature infants, and urinary biomarkers may predict this relationship. Infants with AKI and severe AKI have higher odds of BPD or death. Three urinary angiogenesis biomarkers are altered in infants that develop BPD. These findings have the potential to drive future work to better understand the mechanistic pathways of BPD, setting the framework for future interventions to decrease BPD rates. A better understanding of the mechanisms of BPD development and the role of AKI would have clinical care, cost, and quality of life implications given the long-term effects of BPD.


Subject(s)
Acute Kidney Injury , Bronchopulmonary Dysplasia , Infant, Newborn , Infant , Humans , Female , Bronchopulmonary Dysplasia/complications , Bronchopulmonary Dysplasia/prevention & control , Quality of Life , Placenta Growth Factor , Infant, Extremely Premature , Acute Kidney Injury/complications , Biomarkers
2.
Pediatr Nephrol ; 38(4): 1329-1342, 2023 04.
Article in English | MEDLINE | ID: mdl-35913564

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is common and is associated with poor clinical outcomes in premature neonates. Urine biomarkers hold the promise to improve our understanding and care of patients with kidney disease. Because kidney maturation and gender can impact urine biomarker values in extremely low gestational age neonates (ELGANs), careful control of gestational age (GA) and time is critical to any urine biomarker studies in neonates. METHODS: To improve our understanding of the potential use of urine biomarkers to detect AKI during the first postnatal weeks, we performed a nested case-control study to evaluate 21 candidate urine AKI biomarkers. Cases include 20 ELGANs with severe AKI. Each case was matched with 2 controls for the same GA week (rounded down to the nearest week), gender, and birth weight (BW) (± 50 g). RESULTS: Urine cystatin C, creatinine, ghrelin, fibroblast growth factor-23 (FGF23), tissue metalloproteinase 2 (TIMP2) and vascular endothelial growth factor A (VEGFa) concentrations were higher in ELGANs with early severe AKI compared to matched control subjects without AKI. Urine epidermal growth factor (EGF) and uromodulin (UMOD) concentrations are lower in cases than controls. Interleukin (IL)-15 was lower on day 1, but higher on day 8 in cases than controls; while VEGFa was lower on day 1, but higher on day 5 in cases than controls. CONCLUSION: Urine biomarkers hold the promise to improve our ability to reliably detect kidney injury. Interventional studies are needed to determine the biomarkers' ability to predict outcomes, enhance AKI phenotypes, and improve timely interventions which can prevent the sequalae of AKI in ELGANs. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Acute Kidney Injury , Vascular Endothelial Growth Factor A , Humans , Gestational Age , Case-Control Studies , Matrix Metalloproteinase 2 , Acute Kidney Injury/diagnosis , Biomarkers , Creatinine
3.
Pediatr Res ; 92(1): 151-167, 2022 07.
Article in English | MEDLINE | ID: mdl-34845352

ABSTRACT

BACKGROUND: Our understanding of the normative concentrations of urine biomarkers in premature neonates is limited. METHODS: We evaluated urine from 750 extremely low gestational age (GA) neonates without severe acute kidney injury (AKI) to determine how GA affects ten different urine biomarkers at birth and over the first 30 postnatal days. Then, we investigated if the urine biomarkers changed over time at 27, 30, and 34 weeks postmenstrual age (PMA). Next, we evaluated the impact of sex on urine biomarker concentrations at birth and over time. Finally, we evaluated if urine biomarkers were impacted by treatment with erythropoietin (Epo). RESULTS: We found that all ten biomarker concentrations differ at birth by GA and that some urine biomarker concentrations increase, while others decrease over time. At 27 weeks PMA, 7/10 urine biomarkers differed by GA. By 30 weeks PMA, 5/10 differed, and by 34 weeks PMA, only osteopontin differed by GA. About half of the biomarker concentrations differed by sex, and 4/10 showed different rates of change over time between males vs. females. We found no differences in urine biomarkers by treatment group. CONCLUSIONS: The temporal patterns, GA, and sex differences need to be considered in urine AKI biomarker analyses. IMPACT: Urine biomarker concentrations differ by GA at birth. Some urine biomarkers increase, while others decrease, over the first 30 postnatal days. Most urine biomarkers differ by GA at 27 weeks PMA, but are similar by 34 weeks PMA. Some urine biomarkers vary by sex in premature neonates. Urine biomarkers did not differ between neonates randomized to placebo vs. Epo.


Subject(s)
Acute Kidney Injury , Infant, Premature , Acute Kidney Injury/urine , Biomarkers/urine , Female , Gestational Age , Humans , Infant, Newborn , Infant, Premature/urine , Male , Urinalysis
5.
Pediatr Res ; 77(4): 500-5, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25588190

ABSTRACT

BACKGROUND: Vascular endothelial growth factor (VEGF), a well-characterized regulator of angiogenesis, has been mechanistically implicated in retinal neovascularization and in the pathogenesis of retinopathy of prematurity. However, the ontogeny of VEGF expression in the human fetal retina is not well known. Because retinal vasculature grows with gestational maturation, we hypothesized that VEGF expression also increases in the midgestation human fetal eye as a function of gestational age. METHODS: To identify changes in VEGF gene expression during normal human development, we measured VEGF mRNA by quantitative PCR and measured VEGF protein by enzyme-linked immunosorbent assay and western blots in 10-24 wk gestation fetal vitreous, retina, and serum. RESULTS: VEGF mRNA expression in the retina increased with gestational age. VEGF isoform A, particularly its VEGF121 splice variant, contributed to this positive correlation. Consistent with these findings, we detected increasing VEGF121 protein concentrations in vitreous humor from fetuses of 10-24 wk gestation, while VEGF concentrations decreased in fetal serum. CONCLUSION: VEGF121 mRNA and protein concentrations increase with increasing gestational age in the developing human retina. We speculate that VEGF plays an important role in normal retinal vascular development, and that preterm delivery affects production of this vascular growth factor.


Subject(s)
Gene Expression Regulation, Developmental , RNA, Messenger/metabolism , Retina/embryology , Retinal Neovascularization , Vascular Endothelial Growth Factor A/metabolism , Vitreous Body/embryology , Actins/metabolism , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Gestational Age , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Infant, Newborn , Infant, Premature , RNA, Ribosomal, 18S/metabolism , Retinopathy of Prematurity/metabolism
6.
J Mater Chem B ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38873834

ABSTRACT

Materiobiology is an emerging field focused on the physiochemical properties of biomaterials concerning biological outcomes which includes but is not limited to the biological responses and bioactivity of surface-modified biomaterials. Herein, we report a novel in vitro characterization platform for characterizing nanoparticle surface-modified 3D printed PLA scaffolds. We have introduced innovative design parameters that were practical for ubiquitous in vitro assays like those utilizing 96 and 24-well plates. Subsequently, gold and silica nanoparticles were deposited using two low-temperature plasma-assisted processes namely plasma electroless reduction (PER) and dusty plasma on 3D scaffolds. Materiobiological testing began with nanoparticle surface modification optimization on 96 well plate design 3D scaffolds. We have employed 3D laser confocal imaging and scanning electron microscopy to study the deposition of nanoparticles. It was found that the formation and distribution of the nanoparticles were time-dependent. In vitro assays were performed utilizing an osteosarcoma (MG-63) cell as a model. These cells were grown on both 96 and 24 well plate design 3D scaffolds. Subsequently, we performed different in vitro assays such as cell viability, and fluorescence staining of cytoskeletal actin and DNA incorporation. The actin cytoskeleton staining showed more homogeneity in the cell monolayer growing on the gold nanoparticle-modified 3D scaffolds than the control 3D PLA scaffold. Furthermore, the mineralization and protein adsorption experiments conducted on 96 well plate design scaffolds have shown enhanced mineralization and bovine serum albumin adsorption for the gold nanoparticle-modified scaffolds compared to the control scaffolds. Taken together, this study reports the efficacy of this new in vitro platform in conducting more reliable and efficient materiobiology studies. It is also worth mentioning that this platform has significant futuristic potential for developing as a high throughput screening platform. Such platforms could have a significant impact on the systematic study of biocompatibility and bioactive mechanisms of nanoparticle-modified 3D-printed scaffolds for tissue engineering. It would also provide unique ways to investigate mechanisms of biological responses and subsequent bioactive mechanisms for implantable biomaterials. Moreover, this platform can derive more consistent and reliable in vitro results which can improve the success rate of further in vivo experiments.

7.
Genome Med ; 16(1): 25, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317187

ABSTRACT

BACKGROUND: African ancestry populations have the highest burden of stroke worldwide, yet the genetic basis of stroke in these populations is obscure. The Stroke Investigative Research and Educational Network (SIREN) is a multicenter study involving 16 sites in West Africa. We conducted the first-ever genome-wide association study (GWAS) of stroke in indigenous Africans. METHODS: Cases were consecutively recruited consenting adults (aged > 18 years) with neuroimaging-confirmed ischemic stroke. Stroke-free controls were ascertained using a locally validated Questionnaire for Verifying Stroke-Free Status. DNA genotyping with the H3Africa array was performed, and following initial quality control, GWAS datasets were imputed into the NIH Trans-Omics for Precision Medicine (TOPMed) release2 from BioData Catalyst. Furthermore, we performed fine-mapping, trans-ethnic meta-analysis, and in silico functional characterization to identify likely causal variants with a functional interpretation. RESULTS: We observed genome-wide significant (P-value < 5.0E-8) SNPs associations near AADACL2 and miRNA (MIR5186) genes in chromosome 3 after adjusting for hypertension, diabetes, dyslipidemia, and cardiac status in the base model as covariates. SNPs near the miRNA (MIR4458) gene in chromosome 5 were also associated with stroke (P-value < 1.0E-6). The putative genes near AADACL2, MIR5186, and MIR4458 genes were protective and novel. SNPs associations with stroke in chromosome 2 were more than 77 kb from the closest gene LINC01854 and SNPs in chromosome 7 were more than 116 kb to the closest gene LINC01446 (P-value < 1.0E-6). In addition, we observed SNPs in genes STXBP5-AS1 (chromosome 6), GALTN9 (chromosome 12), FANCA (chromosome 16), and DLGAP1 (chromosome 18) (P-value < 1.0E-6). Both genomic regions near genes AADACL2 and MIR4458 remained significant following fine mapping. CONCLUSIONS: Our findings identify potential roles of regulatory miRNA, intergenic non-coding DNA, and intronic non-coding RNA in the biology of ischemic stroke. These findings reveal new molecular targets that promise to help close the current gaps in accurate African ancestry-based genetic stroke's risk prediction and development of new targeted interventions to prevent or treat stroke.


Subject(s)
Ischemic Stroke , MicroRNAs , Stroke , Adult , Humans , Genome-Wide Association Study , Ischemic Stroke/complications , Genetic Predisposition to Disease , Stroke/genetics , Genomics , Polymorphism, Single Nucleotide , DNA , Multicenter Studies as Topic
8.
Front Nutr ; 10: 1168582, 2023.
Article in English | MEDLINE | ID: mdl-37384109

ABSTRACT

Introduction: Dysbiosis of the gut microbiome may augment lung disease via the gut-lung axis. Proteobacteria may contribute to tissue proteolysis followed by neutrophil recruitment, lung tissue injury, and perpetuation of chronic inflammation. To study the effects of probiotics across the gut-lung axis, we sought to determine if a Lactobacillus probiotic and herbal blend was safe and well-tolerated in healthy volunteers and asthmatic patients. Methods: We conducted a 1-month randomized, open-label clinical trial in Cork, Ireland with healthy and asthmatic patients who took the blend twice a day. The primary endpoint was safety with exploratory endpoints including quality of life, lung function, gut microbiome ecology, and inflammatory biomarkers. Results: All subjects tolerated the blend without adverse events. Asthmatic subjects who took the blend showed significant improvements in lung function as measured by forced expiratory volume and serum short chain fatty acid levels from baseline to Week 4. The gut microbiome of asthmatic subjects differed significantly from controls, with the most prominent difference in the relative abundance of the proteobacteria Escherichia coli. Administration of the probiotic maintained overall microbial community architecture with the only significant difference being an increase in absolute abundance of the probiotic strains measured by strain-specific PCR. Conclusion: This study supports the safety and efficacy potential of a Lactobacillus probiotic plus herbal blend to act on the gut-lung axis. However, due to the lack of a control group, a longer blinded, placebo-controlled study will be warranted to confirm the efficacy improvements observed in this trial. Clinical trial registration: https://clinicaltrials.gov/, identifier NCT05173168.

9.
bioRxiv ; 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36993189

ABSTRACT

Mammalian mucosal barriers secrete antimicrobial peptides (AMPs) as critical host-derived regulators of the microbiota. However, mechanisms that support homeostasis of the microbiota in response to inflammatory stimuli such as supraphysiologic oxygen remain unclear. Here, we show that neonatal mice breathing supraphysiologic oxygen or direct exposure of intestinal organoids to supraphysiologic oxygen suppress the intestinal expression of AMPs and alters the composition of the intestinal microbiota. Oral supplementation of the prototypical AMP lysozyme to hyperoxia exposed neonatal mice reduced hyperoxia-induced alterations in their microbiota and was associated with decreased lung injury. Our results identify a gut-lung axis driven by intestinal AMP expression and mediated by the intestinal microbiota that is linked to lung injury. Together, these data support that intestinal AMPs modulate lung injury and repair. In Brief: Using a combination of murine models and organoids, Abdelgawad and Nicola et al. find that suppression of antimicrobial peptide release by the neonatal intestine in response to supra-physiological oxygen influences the progression of lung injury likely via modulation of the ileal microbiota. Highlights: Supraphysiologic oxygen exposure alters intestinal antimicrobial peptides (AMPs).Intestinal AMP expression has an inverse relationship with the severity of lung injury.AMP-driven alterations in the intestinal microbiota form a gut-lung axis that modulates lung injury.AMPs may mediate a gut-lung axis that modulates lung injury.

10.
Microbiome ; 11(1): 226, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37845716

ABSTRACT

BACKGROUND: Mammalian mucosal barriers secrete antimicrobial peptides (AMPs) as critical, host-derived regulators of the microbiota. However, mechanisms that support microbiota homeostasis in response to inflammatory stimuli, such as supraphysiologic oxygen, remain unclear. RESULTS: We show that supraphysiologic oxygen exposure to neonatal mice, or direct exposure of intestinal organoids to supraphysiologic oxygen, suppresses the intestinal expression of AMPs and alters intestinal microbiota composition. Oral supplementation of the prototypical AMP lysozyme to hyperoxia-exposed neonatal mice reduced hyperoxia-induced alterations in their microbiota and was associated with decreased lung injury. CONCLUSIONS: Our results identify a gut-lung axis driven by intestinal AMP expression and mediated by the intestinal microbiota that is linked to lung injury in newborns. Together, these data support that intestinal AMPs modulate lung injury and repair. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Hyperoxia , Lung Injury , Animals , Mice , Gastrointestinal Microbiome/physiology , Lung Injury/complications , Antimicrobial Peptides , Hyperoxia/complications , Lung , Oxygen , Mammals
11.
medRxiv ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37398134

ABSTRACT

RATIONALE: Bronchopulmonary dysplasia (BPD) is the most common morbidity affecting very preterm infants. Gut fungal and bacterial microbial communities contribute to multiple lung diseases and may influence BPD pathogenesis. METHODS: We performed a prospective, observational cohort study comparing the multikingdom fecal microbiota of 144 preterm infants with or without moderate to severe BPD by sequencing the bacterial 16S and fungal ITS2 ribosomal RNA gene. To address the potential causative relationship between gut dysbiosis and BPD, we used fecal microbiota transplant in an antibiotic-pseudohumanized mouse model. Comparisons were made using RNA sequencing, confocal microscopy, lung morphometry, and oscillometry. RESULTS: We analyzed 102 fecal microbiome samples collected during the second week of life. Infants who later developed BPD showed an obvious fungal dysbiosis as compared to infants without BPD (NoBPD, p = 0.0398, permutational multivariate ANOVA). Instead of fungal communities dominated by Candida and Saccharomyces, the microbiota of infants who developed BPD were characterized by a greater diversity of rarer fungi in less interconnected community architectures. On successful colonization, the gut microbiota from infants with BPD augmented lung injury in the offspring of recipient animals. We identified alterations in the murine intestinal microbiome and transcriptome associated with augmented lung injury. CONCLUSIONS: The gut fungal microbiome of infants who will develop BPD is dysbiotic and may contribute to disease pathogenesis.

12.
Crit Care Explor ; 3(9): e0528, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34514425

ABSTRACT

Cardiopulmonary bypass triggers systemic inflammation, resulting in lung injury, and frequently leads to prolonged mechanical ventilation. Biomarkers of systemic inflammation are required to predict the risk of such complications. We hypothesize that specific serum proteins can be used as biomarkers to predict the severity of lung injury following cardiac surgery. DESIGN: Retrospective chart review study. SETTING: Clinical variables were collected and used in conjuncture with unbiased proteomic analysis using mass spectrometry that was performed on frozen plasma samples from a study group (patients with mechanical ventilation > 48 hr post surgery) and a control group (patients with mechanical ventilation < 48 hr post surgery). SUBJECTS: Subjects included were infants who underwent cardiac surgery with similar complexity (Society of Thoracic Surgeons-European Association for Cardiothoracic Surgery 3 or 4) using cardiopulmonary bypass. Patients in both groups were matched for their weight, age, and duration of cardiopulmonary bypass. INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: Four-hundred eighty-three proteins were identified (99% minimum confidence and two peptides minimum, protein false discovery rate 0.1%) on proteomic analysis of four control and four study patients at precardiopulmonary bypass, 0, and 48 hours postcardiopulmonary bypass samples. Thirty-six of 178 proteins were significantly different (≥ 1.5-fold; p < 0.05) at precardiopulmonary bypass (top increased: tenascin; top decreased: tetranectin), 18 of 140 proteins at 0 hour (top increased: hemoglobin beta; top decreased: C8 beta), and 25 of 166 proteins at 48 hours post surgery (top increased: proteoglycan 4; top decreased: galectin-3-binding protein). The top pathway involved cytoskeleton remodeling. Other pathways involved immune response and blood coagulation. Proteoglycan 4 was validated by enzyme-linked immunosorbent assay in a different set of samples (n = 20/group; mean ± sd: 128 ± 67 vs 195 ± 160 ng/mL) (p = 0.037). CONCLUSIONS: Multiple proteomic biomarkers were associated with worse respiratory outcomes. Precardiopulmonary bypass biomarkers might indicate risk factors (e.g., abnormalities of coagulation), whereas those identified at 0 hour and post cardiopulmonary bypass may reflect mechanisms of ongoing pathobiology.

13.
Dev Biol ; 335(2): 407-17, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19769957

ABSTRACT

Prenatal inflammation prevents normal lung morphogenesis and leads to bronchopulmonary dysplasia (BPD), a common complication of preterm birth. We previously demonstrated in a bacterial endotoxin mouse model of BPD that disrupting fibronectin localization in the fetal lung mesenchyme causes arrested saccular airway branching. In this study we show that expression of the fibronectin receptor, integrin alpha8beta1 is decreased in the lung mesenchyme in the same inflammation model suggesting it is required for normal lung development. We verified a role for integrin alpha8beta1 in lung development using integrin alpha8-null mice, which develop fusion of the medial and caudal lobes as well as abnormalities in airway division. We further show in vivo and in vitro that alpha8-null fetal lung mesenchymal cells fail to form stable adhesions and have increased migration. Thus we propose that integrin alpha8beta1 plays a critical role in lung morphogenesis by regulating mesenchymal cell adhesion and migration. Furthermore, our data suggest that disruption of the interactions between extracellular matrix and integrin alpha8beta1 may contribute to the pathogenesis of BPD.


Subject(s)
Integrins/physiology , Lung/embryology , Morphogenesis/physiology , Animals , Cell Movement , Female , Gene Expression Regulation, Developmental/drug effects , Integrins/genetics , Lipopolysaccharides/pharmacology , Lung/cytology , Mice , Mice, Knockout , Polymerase Chain Reaction
14.
Biochem J ; 376(Pt 1): 87-95, 2003 Nov 15.
Article in English | MEDLINE | ID: mdl-12932195

ABSTRACT

The sizes and anomers of the products formed during the hydrolysis of chitin oligosaccharides by the Family 18 chitinase A (ChiA) from Serratia marcescens were analysed by hydrophilic interaction chromatography using a novel approach in which reactions were performed at 0 degrees C to stabilize the anomer conformations of the initial products. Crystallographic studies of the enzyme, having the structure of the complex of the ChiA E315L (Glu315-->Leu) mutant with a hexasaccharide, show that the oligosaccharide occupies subsites -4 to +2 in the substrate-binding cleft, consistent with the processing of beta-chitin by the release of disaccharide at the reducing end. Products of the hydrolysis of hexa- and penta-saccharides by wild-type ChiA, as well as by two mutants of the residues Trp275 and Phe396 important in binding the substrate at the +1 and +2 sites, show that the substrates only occupy sites -2 to +2 and that additional N -acetyl-D-glucosamines extend beyond the substrate-binding cleft at the reducing end. The subsites -3 and -4 are not used in this four-site binding mode. The explanation for these results is found in the high importance of individual binding sites for the processing of short oligosaccharides compared with the cumulative recognition and processive hydrolysis mechanism used to digest natural beta-chitin.


Subject(s)
Chitin/metabolism , Chitinases/metabolism , Serratia marcescens/enzymology , Binding Sites , Chitin/chemistry , Chitinases/chemistry , Chitinases/genetics , Crystallography, X-Ray , Hydrolysis , Isomerism , Mass Spectrometry , Models, Molecular , Mutation , Oligosaccharides/metabolism , Substrate Specificity
15.
Organogenesis ; 10(4): 340-9, 2014.
Article in English | MEDLINE | ID: mdl-25482312

ABSTRACT

Division of large, immature alveolar structures into smaller, more numerous alveoli increases the surface area available for gas exchange. Alveolar division requires precise epithelial-mesenchymal interactions. However, few experimental models exist for studying how these cell-cell interactions produce changes in 3-dimensional structure. Here we report an epithelial-mesenchymal cell co-culture model where 3-dimensional peaks form with similar cellular orientation as alveolar structures in vivo. Co-culturing fetal mouse lung mesenchyme with A549 epithelial cells produced tall peaks of cells covered by epithelia with cores of mesenchymal cells. These structures did not form when using adult lung fibroblasts. Peak formation did not require localized areas of cell proliferation or apoptosis. Mesenchymal cells co-cultured with epithelia adopted an elongated cell morphology closely resembling myofibroblasts within alveolar septa in vivo. Because inflammation inhibits alveolar formation, we tested the effects of E. coli lipopolysaccharide on 3-dimensional peak formation. Confocal and time-lapse imaging demonstrated that lipopolysaccharide reduced mesenchymal cell migration, resulting in fewer, shorter peaks with mesenchymal cells present predominantly at the base. This epithelial-mesenchymal co-culture model may therefore prove useful in future studies of mechanisms regulating alveolar morphogenesis.


Subject(s)
Epithelial Cells/physiology , Epithelial-Mesenchymal Transition/physiology , Mesoderm/cytology , Mesoderm/physiology , Morphogenesis/physiology , Pulmonary Alveoli/cytology , Pulmonary Alveoli/growth & development , Animals , Cell Communication/physiology , Cell Movement , Cell Size , Cells, Cultured , Coculture Techniques/methods , Epithelial Cells/cytology , Mice , Mice, Inbred BALB C , Models, Animal
16.
Acta Biomater ; 8(5): 1939-47, 2012 May.
Article in English | MEDLINE | ID: mdl-22342422

ABSTRACT

Nanostructured diamond coatings improve the smoothness and wear characteristics of the metallic component of total hip replacements and increase the longevity of these implants, but the effect of nanodiamond wear debris on macrophages needs to be determined to estimate the long-term inflammatory effects of wear debris. The objective was to investigate the effect of the size of synthetic nanodiamond particles on macrophage proliferation (BrdU incorporation), apoptosis (Annexin-V flow cytometry), metabolic activity (WST-1 assay) and inflammatory cytokine production (qPCR). RAW 264.7 macrophages were exposed to varying sizes (6, 60, 100, 250 and 500 nm) and concentrations (0, 10, 50, 100 and 200 µg ml(-1)) of synthetic nanodiamonds. We observed that cell proliferation but not metabolic activity was decreased with nanoparticle sizes of 6-100 nm at lower concentrations (50 µg ml(-1)), and both cell proliferation and metabolic activity were significantly reduced with nanodiamond concentrations of 200 µg ml(-1). Flow cytometry indicated a significant reduction in cell viability due to necrosis irrespective of particle size. Nanodiamond exposure significantly reduced gene expression of tumor necrosis factor-α, interleukin-1ß, chemokine Ccl2 and platelet-derived growth factor compared to serum-only controls or titanium oxide (anatase 8 nm) nanoparticles, with variable effects on chemokine Cxcl2 and vascular endothelial growth factor. In general, our study demonstrates a size and concentration dependence of macrophage responses in vitro to nanodiamond particles as possible wear debris from diamond-coated orthopedic joint implants.


Subject(s)
Diamond/pharmacology , Macrophage Activation/drug effects , Macrophage Activation/immunology , Macrophages/drug effects , Macrophages/immunology , Nanoparticles/administration & dosage , Nanoparticles/ultrastructure , Cells, Cultured , Humans , Materials Testing , Particle Size
17.
Eur J Pharmacol ; 681(1-3): 60-7, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22366212

ABSTRACT

We tested whether 2-aminoethoxydiphenyl borate (2-APB) induces arrhythmia in perfused rat hearts and whether this arrhythmia might result from the activation of voltage-independent calcium channels. Rat hearts were Langendorff perfused and beat under sinus rhythm. An isovolumic balloon inserted into the left ventricle was used to record mechanical function while bipolar electrograms were recorded from electrodes sutured to the base and the apex of hearts. Western and immunofluorescence analyses were performed on rat left ventricular protein extracts and left ventricular frozen sections, respectively. Rat ventricular myocytes express Orai 1 and Orai 3, and ventricle also contains the Orai regulator Stim1. Rat hearts (n=5) perfused with Krebs-Henseleit (KH) alone maintained sinus rhythm at 4.8 ± 0.1 Hz and stable mechanical function. By contrast, perfusing hearts (n=5) with (KH+22 µM 2-APB) provoked a period of tachycardic ectopy at rates of up to 10.8 ± 0.2 Hz. As perfusion with (KH+22 µM 2-APB) continued, the rate of spontaneous ventricular depolarization increased to 21.8 ± 1.2 Hz and became disorganized. Heart mechanical function collapsed as developed pressure decreased from 87 ± 8.8 to 3.5 ± 1.9 mm Hg. Flow rate did not change between normal (16.6 ± 0.9 ml/min) and fibrillating (17.4 ± 0.8 ml/min) hearts. The addition of 20 µM 1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl) propoxy]ethyl-1H-imidazole (SKF-96365) to (KH+22 µM 2-APB) perfusates (n=4) restored sinus rhythm and heart mechanical output. These data indicate that activating myocardial voltage-independent calcium channels, possibly the Orais, may be a novel cause of ventricular arrhythmia.


Subject(s)
Boron Compounds/toxicity , Calcium Channels/metabolism , Ventricular Fibrillation/chemically induced , Animals , Fluorescent Antibody Technique , Male , Myocytes, Cardiac , ORAI1 Protein , Rats , Rats, Sprague-Dawley
18.
Eur J Pharmacol ; 668(1-2): 208-16, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21745466

ABSTRACT

Calcium transport through plasma membrane voltage-independent calcium channels is vital for signaling events in non-excitable and excitable cells. Following up on our earlier work, we tested the hypothesis that this type of calcium transport can disrupt myocardial electromechanical stability. Our Western and immunofluorescence analyses show that left atrial and ventricular myocytes express the Orai1 and the Orai3 calcium channels. Adding the Orai activator 2-aminoethoxydiphenyl borate (2-APB) to the superfusate of rat left atria causes these non-automatic muscles to contract spontaneously and persistently at rates of up to 10 Hz, and to produce normal action potentials from normal resting potentials, all in the absence of external stimulation. 2-APB likewise induces such automatic activity in superfused rat left ventricular papillary muscles, and the EC(50)s at which 2-APB induces this activity in both muscles are similar to the concentrations which activate Orais. Importantly, the voltage-independent calcium channel inhibitor 1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl) propoxy]ethyl-1H-imidazole (SKF-96365) suppresses this automaticity with an IC(50) of 11 ± 0.6 µM in left atria and 6 ± 1.6 µM in papillary muscles. 1-(5-Iodonaphthalene-1-sulfonyl)-hexahydro-1,4-diazepine (ML-7), a second voltage-independent calcium channel inhibitor, and two calmodulin inhibitors also prevent 2-APB automaticity while two calmodulin-dependent protein kinase II inhibitors do not. Thus an activator of the Orai calcium channels provokes a novel type of high frequency automaticity in non-automatic heart muscle.


Subject(s)
Calcium Channels/metabolism , Heart/drug effects , Heart/physiology , Myocardium/metabolism , Animals , Atrial Function, Left/drug effects , Azepines/pharmacology , Boron Compounds/pharmacology , Calcium Channel Blockers/pharmacology , Calmodulin/antagonists & inhibitors , Gene Expression Regulation/drug effects , Heart Ventricles/cytology , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Imidazoles/pharmacology , In Vitro Techniques , Naphthalenes/pharmacology , ORAI1 Protein , Rats
19.
Structure ; 18(5): 638-48, 2010 May 12.
Article in English | MEDLINE | ID: mdl-20462497

ABSTRACT

IL-10R2 is a shared cell surface receptor required for the activation of five class 2 cytokines (IL-10, IL-22, IL-26, IL-28, and IL-29) that play critical roles in host defense. To define the molecular mechanisms that regulate its promiscuous binding, we have determined the crystal structure of the IL-10R2 ectodomain at 2.14 A resolution. IL-10R2 residues required for binding were identified by alanine scanning and used to derive computational models of IL-10/IL-10R1/IL-10R2 and IL-22/IL-22R1/IL-10R2 ternary complexes. The models reveal a conserved binding epitope that is surrounded by two clefts that accommodate the structural and chemical diversity of the cytokines. These results provide a structural framework for interpreting IL-10R2 single nucleotide polymorphisms associated with human disease.


Subject(s)
Cytokines/chemistry , Cytokines/metabolism , Interleukin-10/chemistry , Interleukin-10/metabolism , Alanine/genetics , Alanine/metabolism , Cytokines/genetics , Humans , Interleukin-10/genetics , Interleukins , Protein Binding/genetics , Receptors, Interleukin , Interleukin-22
20.
Am J Physiol Lung Cell Mol Physiol ; 292(2): L550-8, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17071719

ABSTRACT

Many extremely preterm infants continue to suffer from bronchopulmonary dysplasia, which results from abnormal saccular-stage lung development. Here, we show that fibroblast growth factor-10 (FGF-10) is required for saccular lung development and reduced in the lung tissue of infants with bronchopulmonary dysplasia. Although exposure to bacteria increases the risk of bronchopulmonary dysplasia, no molecular target has been identified connecting inflammatory stimuli and abnormal lung development. In an experimental mouse model of saccular lung development, activation of Toll-like receptor 2 (TLR2) or Toll-like receptor 4 (TLR4) inhibited FGF-10 expression, leading to abnormal saccular airway morphogenesis. In addition, Toll-mediated FGF-10 inhibition disrupted the normal positioning of myofibroblasts around saccular airways, similar to the mislocalization of myofibroblasts seen in patients with bronchopulmonary dysplasia. Reduced FGF-10 expression may therefore link the innate immune system and impaired lung development in bronchopulmonary dysplasia.


Subject(s)
Bronchopulmonary Dysplasia/metabolism , Disease Models, Animal , Fibroblast Growth Factor 10/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Animals , Bronchopulmonary Dysplasia/immunology , Bronchopulmonary Dysplasia/pathology , Female , Fetus/drug effects , Fetus/pathology , Fibroblast Growth Factor 10/genetics , Fibroblasts/drug effects , Fibroblasts/pathology , Gene Expression Regulation/drug effects , Humans , Infant, Newborn , Lipopolysaccharides/pharmacology , Lung/drug effects , Lung/pathology , Mice , Mice, Inbred BALB C , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL