Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Neurodegener Dis ; 17(1): 22-30, 2017.
Article in English | MEDLINE | ID: mdl-27602566

ABSTRACT

BACKGROUND: The need for accessible cellular biomarkers of neurodegeneration in carriers of the fragile X mental retardation 1 (FMR1) premutation (PM) alleles. OBJECTIVE: To assess the mitochondrial status and respiration in blood lymphoblasts from PM carriers manifesting the fragile X-associated tremor/ataxia syndrome (FXTAS) and non-FXTAS carriers, and their relationship with the brain white matter lesions. METHODS: Oxygen consumption rates (OCR) and ATP synthesis using a Seahorse XFe24 Extracellular Flux Analyser, and steady-state parameters of mitochondrial function were assessed in cultured lymphoblasts from 16 PM males (including 11 FXTAS patients) and 9 matched controls. The regional white matter hyperintensity (WMH) scores were obtained from MRI. RESULTS: Mitochondrial respiratory activity was significantly elevated in lymphoblasts from PM carriers compared with controls, with a 2- to 3-fold increase in basal and maximum OCR attributable to complex I activity, and ATP synthesis, accompanied by unaltered mitochondrial mass and membrane potential. The changes, which were more advanced in FXTAS patients, were significantly associated with the WMH scores in the supratentorial regions. CONCLUSION: The dramatic increase in mitochondrial activity in lymphoblasts from PM carriers may represent either the early stages of disease (specific alterations in short-lived blood cells) or an activation of the lymphocytes under pathological situations. These changes may provide early, convenient blood biomarkers of clinical involvements.


Subject(s)
Ataxia/blood , Ataxia/diagnostic imaging , Brain/diagnostic imaging , Fragile X Syndrome/blood , Fragile X Syndrome/diagnostic imaging , Tremor/blood , Tremor/diagnostic imaging , White Matter/diagnostic imaging , Adolescent , Aged , Aged, 80 and over , Ataxia/genetics , Biomarkers/blood , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Heterozygote , Humans , Lymphocytes/metabolism , Magnetic Resonance Imaging , Male , Middle Aged , Mitochondria/metabolism , Oxygen Consumption , Regression Analysis , Tremor/genetics
2.
J Int Neuropsychol Soc ; 20(6): 663-71, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24834461

ABSTRACT

Severe traumatic brain injury (TBI) in older age is associated with high rates of mortality. However, little is known about outcome following mild TBI (mTBI) in older age. We report on a prospective cohort study investigating 3 month outcome in older age patients admitted to hospital-based trauma services. First, 50 mTBI older age patients and 58 orthopedic controls were compared to 123 community control participants to evaluate predisposition and general trauma effects on cognition. Specific brain injury effects were subsequently evaluated by comparing the orthopedic control and mTBI groups. Both trauma groups had significantly lower performances than the community group on prospective memory (d=0.82 to 1.18), attention set-shifting (d=-0.61 to -0.69), and physical quality of life measures (d=0.67 to 0.84). However, there was only a small to moderate but non-significant difference in the orthopedic control and mTBI group performances on the most demanding task of prospective memory (d=0.37). These findings indicate that, at 3 months following mTBI, older adults are at risk of poor cognitive performance but this is substantially accounted for by predisposition to injury or general multi-system trauma.


Subject(s)
Brain Injuries/complications , Cognition Disorders/diagnosis , Cognition Disorders/etiology , Aged , Aged, 80 and over , Analysis of Variance , Attention/physiology , Female , Humans , Male , Memory, Episodic , Neuropsychological Tests , Outcome Assessment, Health Care , Residence Characteristics , Retrospective Studies , Trauma Severity Indices
3.
Neurodegener Dis ; 14(2): 67-76, 2014.
Article in English | MEDLINE | ID: mdl-24401315

ABSTRACT

BACKGROUND/AIMS: Alleles of the FMR1 gene containing small expansions of the CGG-trinucleotide repeat comprise premutation and grey-zone alleles. Premutation alleles may cause late-onset Fragile X-associated tremor/ataxia syndrome attributed to the neurotoxic effect of elevated FMR1 transcripts. Our earlier data suggested that both grey-zone and low-end premutation alleles might also play a significant role in the acquisition of the parkinsonian phenotype due to mitochondrial dysfunction caused by elevated FMR1 mRNA toxicity. These data were obtained through clinical and molecular comparisons between carriers of grey-zone/low-end premutation alleles and group-matched non-carrier controls from patients with idiopathic Parkinson's disease (iPD). We aimed to explore the relationship between grey-zone alleles, parkinsonism and white matter changes. METHODS: This study compared the extent and severity of white matter hyperintensity (WMH) on magnetic resonance imaging, using a semi-quantitative method, between 11 grey-zone/low-end premutation carriers and 20 non-carrier controls with iPD from our earlier study. Relationships between WMH scores, and cognitive and motor test scores were assessed for carriers and non-carriers. RESULTS: Supratentorial WMH scores, and tremor and ataxia motor scores were significantly higher in carriers compared with disease controls. Moreover, some associations between cognitive decline and WMH scores were specific for each respective carrier status category. CONCLUSIONS: The results support our earlier claim that grey-zone alleles contribute to the severity of parkinsonism and white matter changes.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Parkinson Disease/genetics , Parkinson Disease/pathology , Trinucleotide Repeat Expansion , White Matter/pathology , Aged , Aged, 80 and over , Alleles , Ataxia/diagnosis , Humans , Male , Middle Aged , Neuropsychological Tests , Pilot Projects
4.
Front Neurol ; 10: 832, 2019.
Article in English | MEDLINE | ID: mdl-31456732

ABSTRACT

This study explores the relationships between hemispheric and cerebellar white matter lesions and motor and cognitive impairments in male carriers of Fragile-X Mental Retardation 1 (FMR1) premutation alleles, and in a subgroup of these carriers affected with Fragile X-Associated Tremor/Ataxia syndrome (FXTAS). Regional and total white matter hyperintensities (wmhs) on MRI, assessed using semiquantitative scores, were correlated with three motor rating scales (ICARS, UPDRS, Tremor), and neuropsychological measures of non-verbal reasoning, working memory and processing speed, in a sample of 30 male premutation carriers aged 39-81 years, and separately in a subsample of 17 of these carriers affected with FXTAS. There were significant relationships between wmhs in the infratentorial region and all three motor scales, as well as several cognitive measures-Prorated IQ, Matrix Reasoning, Similarities, and the Symbol Digit Modalities Test (SDMT), in the total sample of carriers, as well as in the FXTAS group separately. This shows that whms within the infratentorial region correlates across the categories of clinical status with a range of motor and cognitive impairments. In the FXTAS group, there was a highly significant relationship between supratentorial (periventricular) lesions and parkinsonism, and between both periventricular and supratentorial deep white matter and ICARS ataxia score. These findings further support the relevance of white matter changes in different brain regions to the motor and cognitive deficits across the spectrum of premutation involvement. Future longitudinal studies using larger sample sizes will be necessary to examine the factors that lead to conversion to a greater extent of neurological involvement as seen in the progression across the FXTAS spectrum.

5.
Front Genet ; 9: 531, 2018.
Article in English | MEDLINE | ID: mdl-30483310

ABSTRACT

The fragile X premutation (PM) allele contains a CGG expansion of 55-200 repeats in the FMR1 gene's promoter. Male PM carriers have an elevated risk of developing neurological and psychiatric changes, including an approximately 50% risk of the fragile X-associated tremor/ataxia syndrome (FXTAS). The aim of this study was to assess the relationships of regional white matter hyperintensities (wmhs) semi-quantitative scores, clinical status, motor (UPDRS, ICARS, Tremor) scales, and cognitive impairments, with FMR1-specific genetic changes, in a sample of 32 unselected male PM carriers aged 39-81 years. Half of these individuals were affected with FXTAS, while the non-FXTAS group comprised subcategories of non-affected individuals and individuals affected with non-syndromic changes. The dynamics of pathological processes at the cellular level relevant to the clinical status of PM carriers was investigated using the enzyme AMP-activated protein kinase (AMPK), which is a highly sensitive cellular stress-sensing alarm protein. This enzyme, as well as genetic markers - CGG repeat number and the levels of the FMR1 mRNA - were assessed in blood lymphoblasts. The results showed that the repeat distribution for FXTAS individuals peaked at 85-90 CGGs; non-FXTAS carriers were distributed within the lowest end of the PM repeat range, and non-syndromic carriers assumed an intermediate position. The size of the CGG expansion was significantly correlated, across all three categories, with infratentorial and total wmhs and with all motor scores, and the FMR1 mRNA levels with all the wmh scores, whilst AMPK activity showed considerable elevation in the non-FXTAS combined group, decreasing in the FXTAS group, proportionally to increasing severity of the wmhs and tremor/ataxia. We conclude that the size of the CGG expansion relates to the risk for FXTAS, to severity of infratentorial wmhs lesions, and to all three motor scale scores. FMR1 mRNA shows a strong association with the extent of wmhs, which is the most sensitive marker of the pathological process. However, the AMPK activity findings - suggestive of a role of this enzyme in the risk of FXTAS - need to be verified and expanded in future studies using larger samples and longitudinal assessment.

6.
Dis Model Mech ; 9(11): 1295-1305, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27638668

ABSTRACT

In combination with studies of post-mortem Parkinson's disease (PD) brains, pharmacological and genetic models of PD have suggested that two fundamental interacting cellular processes are impaired - proteostasis and mitochondrial respiration. We have re-examined the role of mitochondrial dysfunction in lymphoblasts isolated from individuals with idiopathic PD and an age-matched control group. As previously reported for various PD cell types, the production of reactive oxygen species (ROS) by PD lymphoblasts was significantly elevated. However, this was not due to an impairment of mitochondrial respiration, as is often assumed. Instead, basal mitochondrial respiration and ATP synthesis are dramatically elevated in PD lymphoblasts. The mitochondrial mass, genome copy number and membrane potential were unaltered, but the expression of indicative respiratory complex proteins was also elevated. This explains the increased oxygen consumption rates by each of the respiratory complexes in experimentally uncoupled mitochondria of iPD cells. However, it was not attributable to increased activity of the stress- and energy-sensing protein kinase AMPK, a regulator of mitochondrial biogenesis and activity. The respiratory differences between iPD and control cells were sufficiently dramatic as to provide a potentially sensitive and reliable biomarker of the disease state, unaffected by disease duration (time since diagnosis) or clinical severity. Lymphoblasts from control and PD individuals thus occupy two distinct, quasi-stable steady states; a 'normal' and a 'hyperactive' state characterized by two different metabolic rates. The apparent stability of the 'hyperactive' state in patient-derived lymphoblasts in the face of patient ageing, ongoing disease and mounting disease severity suggests an early, permanent switch to an alternative metabolic steady state. With its associated, elevated ROS production, the 'hyperactive' state might not cause pathology to cells that are rapidly turned over, but brain cells might accumulate long-term damage leading ultimately to neurodegeneration and the loss of mitochondrial function observed post-mortem. Whether the 'hyperactive' state in lymphoblasts is a biomarker specifically of PD or more generally of neurodegenerative disease remains to be determined.


Subject(s)
Lymphocytes/metabolism , Lymphocytes/pathology , Mitochondria/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Adult , Age Factors , Cell Line, Transformed , Cell Respiration , Gene Dosage , Genome , Humans , Membrane Potential, Mitochondrial , Oxidative Phosphorylation , Oxygen Consumption , Parkinson Disease/blood , Parkinson Disease/diagnosis , RNA, Messenger/genetics , RNA, Messenger/metabolism , ROC Curve , Reactive Oxygen Species/metabolism , Regression Analysis , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL