Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 140(5): 744-52, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20211142

ABSTRACT

Combinatorial interactions among transcription factors are critical to directing tissue-specific gene expression. To build a global atlas of these combinations, we have screened for physical interactions among the majority of human and mouse DNA-binding transcription factors (TFs). The complete networks contain 762 human and 877 mouse interactions. Analysis of the networks reveals that highly connected TFs are broadly expressed across tissues, and that roughly half of the measured interactions are conserved between mouse and human. The data highlight the importance of TF combinations for determining cell fate, and they lead to the identification of a SMAD3/FLI1 complex expressed during development of immunity. The availability of large TF combinatorial networks in both human and mouse will provide many opportunities to study gene regulation, tissue differentiation, and mammalian evolution.


Subject(s)
Gene Expression Regulation , Gene Regulatory Networks , Transcription Factors/metabolism , Animals , Cell Differentiation , Evolution, Molecular , Humans , Mice , Monocytes/cytology , Organ Specificity , Smad3 Protein/metabolism , Trans-Activators/metabolism
2.
Phys Rev Lett ; 132(13): 137102, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38613292

ABSTRACT

We study diffusion in systems of classical particles whose dynamics conserves the total center of mass. This conservation law leads to several interesting consequences. In finite systems, it allows for equilibrium distributions that are exponentially localized near system boundaries. It also yields an unusual approach to equilibrium, which in d dimensions exhibits scaling with dynamical exponent z=4+d. Similar phenomena occur for dynamics that conserves higher moments of the density, which we systematically classify using a family of nonlinear diffusion equations. In the quantum setting, analogous fermionic systems are shown to form real-space Fermi surfaces, while bosonic versions display a real-space analog of Bose-Einstein condensation.

3.
Phys Rev Lett ; 124(2): 026401, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-32004053

ABSTRACT

Artificial crystals synthesized by atomic-scale epitaxy provide the ability to control the dimensions of the quantum phases and associated phase transitions via precise thickness modulation. In particular, the reduction in dimensionality via quantized control of atomic layers is a powerful approach to revealing hidden electronic and magnetic phases. Here, we demonstrate a dimensionality-controlled and induced metal-insulator transition (MIT) in atomically designed superlattices by synthesizing a genuine two-dimensional (2D) SrRuO_{3} crystal with highly suppressed charge transfer. The tendency to ferromagnetically align the spins in an SrRuO_{3} layer diminishes in 2D as the interlayer exchange interaction vanishes, accompanying the 2D localization of electrons. Furthermore, electronic and magnetic instabilities in the two SrRuO_{3} unit cell layers induce a thermally driven MIT along with a metamagnetic transition.

4.
Nat Mater ; 17(12): 1087-1094, 2018 12.
Article in English | MEDLINE | ID: mdl-30397313

ABSTRACT

Magnetic skyrmions are topologically protected whirling spin texture. Their nanoscale dimensions, topologically protected stability and solitonic nature, together are promising for future spintronics applications. To translate these compelling features into practical spintronic devices, a key challenge lies in achieving effective control of skyrmion properties, such as size, density and thermodynamic stability. Here, we report the discovery of ferroelectrically tunable skyrmions in ultrathin BaTiO3/SrRuO3 bilayer heterostructures. The ferroelectric proximity effect at the BaTiO3/SrRuO3 heterointerface triggers a sizeable Dzyaloshinskii-Moriya interaction, thus stabilizing robust skyrmions with diameters less than a hundred nanometres. Moreover, by manipulating the ferroelectric polarization of the BaTiO3 layer, we achieve local, switchable and nonvolatile control of both skyrmion density and thermodynamic stability. This ferroelectrically tunable skyrmion system can simultaneously enhance the integratability and addressability of skyrmion-based functional devices.

5.
Phys Rev Lett ; 121(9): 097203, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30230896

ABSTRACT

A clear thermal Hall signal (κ_{xy}) was observed in the spin-liquid phase of the S=1/2 kagome antiferromagnet Ca kapellasite [CaCu_{3}(OH)_{6}Cl_{2}·0.6H_{2}O]. We found that κ_{xy} is well reproduced, both qualitatively and quantitatively, using the Schwinger-boson mean-field theory with the Dzyaloshinskii-Moriya interaction of D/J∼0.1. In particular, κ_{xy} values of Ca kapellasite and those of another kagome antiferromagnet, volborthite, converge to one single curve in simulations modeled using Schwinger bosons, indicating a common temperature dependence of κ_{xy} for the spins of a kagome antiferromagnet.

6.
Phys Rev Lett ; 121(18): 186401, 2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30444409

ABSTRACT

We investigate the hidden Berry curvature in bulk 2H-WSe_{2} by utilizing the surface sensitivity of angle resolved photoemission (ARPES). The symmetry in the electronic structure of transition metal dichalcogenides is used to uniquely determine the local orbital angular momentum (OAM) contribution to the circular dichroism (CD) in ARPES. The extracted CD signals for the K and K^{'} valleys are almost identical, but their signs, which should be determined by the valley index, are opposite. In addition, the sign is found to be the same for the two spin-split bands, indicating that it is independent of spin state. These observed CD behaviors are what are expected from Berry curvature of a monolayer of WSe_{2}. In order to see if CD-ARPES is indeed representative of hidden Berry curvature within a layer, we use tight binding analysis as well as density functional calculation to calculate the Berry curvature and local OAM of a monolayer WSe_{2}. We find that measured CD-ARPES is approximately proportional to the calculated Berry curvature as well as local OAM, further supporting our interpretation.

7.
Phys Rev Lett ; 116(2): 026805, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26824561

ABSTRACT

The Weyl semimetal is characterized by three-dimensional linear band touching points called Weyl nodes. These nodes come in pairs with opposite chiralities. We show that the coupling of circularly polarized photons with these chiral electrons generates a Hall conductivity without any applied magnetic field in the plane orthogonal to the light propagation. This phenomenon comes about because with all three Pauli matrices exhausted to form the three-dimensional linear dispersion, the Weyl nodes cannot be gapped. Rather, the net influence of chiral photons is to shift the positions of the Weyl nodes. Interestingly, the momentum shift is tightly correlated with the chirality of the node to produce a net anomalous Hall signal. Application of our proposal to the recently discovered TaAs family of Weyl semimetals leads to an order-of-magnitude estimate of the photoinduced Hall conductivity which is within the experimentally accessible range.

8.
Korean J Physiol Pharmacol ; 19(5): 473-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26330761

ABSTRACT

To see the inhibitory mechanism of gentamicin in response to electrical field stimulation (EFS) using the rat bladder smooth muscle, atropine or guanethidine was treated but had no effect. Methylsergide, a non-selective 5-HT1, 5-HT2 receptor antagonist was also treated but had on effect. Kinase inhibitors, such as chelerythrine (PKC inhibitor), ML-9 (MLCK inhibitor), or Y27632 (rho kinase inhibitor) were pretreated before gentamicin treatment, but did not have effect. For U73122, a phospholipase C (PLC) inhibitor however, the inhibitory effect to gentamicin was significantly attenuated in all frequencies given by the EFS. Therefore gentamicin induced inhibitory effect on EFS response in rat bladder smooth muscle was not mediated by the activation of adrenergic, cholinergic, or serotonergic receptor. The inhibition of gentamicin might be mediated through the PLC dependent pathway, but not through the PKC, MLCK or rho kinase dependent pathway.

9.
Phys Rev Lett ; 112(16): 160402, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24815625

ABSTRACT

Hydrodynamics of the spin-1 Bose-Einstein condensate is investigated without restriction of its allowed manifold to either the ferromagnetic or the antiferromagnetic phase. Mixing of the two manifolds is found to be a generic feature in the temporal evolution of the condensate, regardless of the sign and strength of the spin-dependent interaction. Hydrodynamic theory is developed based on a new representation of the spin-1 condensate wave function as a linear combination of the well-known wave functions specific to antiferromagnetic and ferromagnetic manifolds only. Dynamical constraints unique to each submanifold are derived for the first time, demonstrating that efforts to write down hydrodynamic theory in one specific manifold are generally invalid. Certain exceptions, such as a uniform spiral state in the antiferromagnetic manifold, are shown to sustain dynamical evolution within the same manifold over time.

10.
ACS Appl Mater Interfaces ; 16(24): 31254-31260, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38856760

ABSTRACT

Herein, a heterojunction structure integrating p-type tellurium (Te) and n-type aluminum-doped indium-zinc-tin oxide (Al:IZTO) is shown to precisely modulate the threshold voltage (VT) of the oxide thin-film transistor (TFT). The proposed architecture integrates Te as an electron-blocking layer and Al:IZTO as a charge-carrier transporting layer, thereby enabling controlled electron injection. The effects of incorporating the Te layer onto Al:IZTO are investigated, with a focus on X-ray photoelectron spectroscopy (XPS) analysis, in order to explain the behavior of oxygen vacancies and to depict the energy band structure configurations. By modulating the thickness and employing both single and double deposition methods for the heterojunction Te layer, a remarkable VT shift of up to +20 V is achieved. Furthermore, this study also shows excellent stability to a positive bias stress of +2 MV/cm for 10,000 s without additional passivation layers, demonstrating the robustness of the designed TFT. By a thorough optimization of the Al:IZTO/Te interface, the results demonstrate not only the substantial impact of the introduced heterojunction structure on VT control but also the endurance, durability, and stability of the optimized TFTs under prolonged long-term operating stress, thus offering promising prospects for tailored semiconductor device applications.

11.
J Clin Neurol ; 20(2): 175-185, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38171505

ABSTRACT

BACKGROUND AND PURPOSE: The influence of imaging features of brain frailty on outcomes were investigated in acute ischemic stroke patients with minor symptoms and large-vessel occlusion (LVO). METHODS: This was a retrospective analysis of a prospective, multicenter, nationwide registry of consecutive patients with acute (within 24 h) minor (National Institutes of Health Stroke Scale score=0-5) ischemic stroke with anterior circulation LVO (acute minor LVO). Brain frailty was stratified according to the presence of an advanced white-matter hyperintensity (WMH) (Fazekas grade 2 or 3), silent/old brain infarct, or cerebral microbleeds. The primary outcome was a composite of stroke, myocardial infarction, and all-cause mortality within 1 year. RESULTS: In total, 1,067 patients (age=67.2±13.1 years [mean±SD], 61.3% males) were analyzed. The proportions of patients according to the numbers of brain frailty burdens were as follows: no burden in 49.2%, one burden in 30.0%, two burdens in 17.3%, and three burdens in 3.5%. In the Cox proportional-hazards analysis, the presence of more brain frailty burdens was associated with a higher risk of 1-year primary outcomes, but after adjusting for clinically relevant variables there were no significant associations between burdens of brain frailty and 1-year vascular outcomes. For individual components of brain frailty, an advanced WMH was independently associated with an increased risk of 1-year primary outcomes (adjusted hazard ratio [aHR]=1.33, 95% confidence interval [CI]=1.03-1.71) and stroke (aHR=1.32, 95% CI=1.00-1.75). CONCLUSIONS: The baseline imaging markers of brain frailty were common in acute minor ischemic stroke patients with LVO. An advanced WMH was the only frailty marker associated with an increased risk of vascular events. Further research is needed into the association between brain frailty and prognosis in patients with acute minor LVO.

12.
Alzheimers Res Ther ; 15(1): 178, 2023 10 14.
Article in English | MEDLINE | ID: mdl-37838715

ABSTRACT

BACKGROUND: The effect of amyloid-ß (Aß) on cognitive impairment in patients with small subcortical infarction remains controversial, although a growing body of evidence shows a substantial overlap between Alzheimer's disease (AD) and subcortical ischemic vascular dementia, another form of cerebral small vessel disease (cSVD). Therefore, we investigated the relationships between Aß positivity and the development of post-stroke cognitive impairment (PSCI) in patients with small subcortical infarction. METHODS: We prospectively recruited 37 patients aged ≥ 50 years, with first-ever small subcortical infarction, who underwent amyloid positron emission tomography, 3 months after stroke at Korea University Guro Hospital. We also enrolled CU participants matched for age and sex with stroke patients for comparison of Aß positivity. Patients were followed up at 3 and 12 months after the stroke to assess cognitive decline. Logistic and linear mixed-effect regression analyses were performed to identify the effect of Aß positivity on PSCI development and long-term cognitive trajectories. RESULTS: At 3 months after stroke, 12/37 (32.4%) patients developed PSCI, and 11/37 (29.7%) patients had Aß deposition. Aß positivity (odds ratio [OR] = 72.2, p = 0.024) was predictive of PSCI development regardless of cSVD burden. Aß positivity (ß = 0.846, p = 0.014) was also associated with poor cognitive trajectory, assessed by the Clinical Dementia Rating-Sum of Box, for 1 year after stroke. CONCLUSIONS: Our findings highlight that Aß positivity is an important predictor for PSCI development and cognitive decline over 1 year. Furthermore, our results provide evidence that anti-AD medications may be a strategy for preventing cognitive decline in patients with small subcortical infarctions.


Subject(s)
Alzheimer Disease , Cerebral Small Vessel Diseases , Cognitive Dysfunction , Dementia, Vascular , Stroke , Humans , Cognitive Dysfunction/etiology , Cognitive Dysfunction/complications , Amyloid beta-Peptides , Alzheimer Disease/complications , Stroke/complications , Stroke/diagnostic imaging , Stroke/psychology , Cerebral Infarction/complications , Cerebral Infarction/diagnostic imaging , Dementia, Vascular/complications , Positron-Emission Tomography , Cerebral Small Vessel Diseases/complications
13.
Nat Commun ; 14(1): 4145, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37438375

ABSTRACT

Finding d-electron heavy fermion states has been an important topic as the diversity in d-electron materials can lead to many exotic Kondo effect-related phenomena or new states of matter such as correlation-driven topological Kondo insulator. Yet, obtaining direct spectroscopic evidence for a d-electron heavy fermion system has been elusive to date. Here, we report the observation of Kondo lattice behavior in an antiferromagnetic metal, FeTe, via angle-resolved photoemission spectroscopy, scanning tunneling spectroscopy and transport property measurements. The Kondo lattice behavior is represented by the emergence of a sharp quasiparticle and Fano-type tunneling spectra at low temperatures. The transport property measurements confirm the low-temperature Fermi liquid behavior and reveal successive coherent-incoherent crossover upon increasing temperature. We interpret the Kondo lattice behavior as a result of hybridization between localized Fe 3dxy and itinerant Te 5pz orbitals. Our observations strongly suggest unusual cooperation between Kondo lattice behavior and long-range magnetic order.

14.
Phys Rev Lett ; 108(18): 185301, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22681085

ABSTRACT

Hydrodynamic theory of the spinor BEC condensate with Rashba spin-orbit coupling is presented. A close mathematical analogy of the Rashba-Bose-Einstein condensate model to the recently developed theory of chiral magnetism is found. Hydrodynamic equations for mass density, superfluid velocity, and the local magnetization are derived. The mass current is shown to contain an extra term proportional to the magnetization direction, as a result of the Rashba coupling. Elementary excitations around the two known ground states of the Rashba-Bose-Einstein condensate Hamiltonian, the plane-wave, and the stripe states, are worked out in the hydrodynamic framework, highlighting the cross coupling of spin and superflow velocity excitations due to the Rashba term.

15.
Phys Rev Lett ; 108(4): 046805, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22400876

ABSTRACT

We performed angle-resolved photoemission (ARPES) experiments with circularly polarized light and first-principles density functional calculation with spin-orbit coupling to study surface states of a topological insulator Bi2Se3. We observed circular dichroism (CD) as large as 30% in the ARPES data with upper and lower Dirac cones showing opposite signs in CD. The observed CD is attributed to the existence of local orbital-angular momentum (OAM). First-principles calculation shows that OAM in the surface states is significant and is locked to the electron momentum in the opposite direction to the spin, forming chiral OAM states. Our finding opens a new possibility for strong light-induced spin-polarized current in surface states. We also provide a proof for local OAM origin of the CD in ARPES.

16.
Proc Natl Acad Sci U S A ; 106(37): 15573-6, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19717461

ABSTRACT

The study of abrupt increases in magnetization with magnetic field known as metamagnetic transitions has opened a rich vein of new physics in itinerant electron systems, including the discovery of quantum critical end points with a marked propensity to develop new kinds of order. However, the electric analogue of the metamagnetic critical end point, a "metaelectric" critical end point, has been rarely studied. Multiferroic materials wherein magnetism and ferroelectricity are cross-coupled are ideal candidates for the exploration of this novel possibility using magnetic-field (H) as a tuning parameter. Herein, we report the discovery of a magnetic-field-induced metaelectric transition in multiferroic BiMn(2)O(5), in which the electric polarization (P) switches polarity along with a concomitant Mn spin-flop transition at a critical magnetic field H(c). The simultaneous metaelectric and spin-flop transitions become sharper upon cooling but remain a continuous cross-over even down to 0.5 K. Near the P = 0 line realized at mu(0)H(c) approximately 18 T below 20 K, the dielectric constant (epsilon) increases significantly over wide field and temperature (T) ranges. Furthermore, a characteristic power-law behavior is found in the P(H) and epsilon(H) curves at T = 0.66 K. These findings indicate that a magnetic-field-induced metaelectric critical end point is realized in BiMn(2)O(5) near zero temperature.

17.
Sci Adv ; 8(4): eabm4005, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35089783

ABSTRACT

Chiral symmetry breaking of phonons plays an essential role in emergent quantum phenomena owing to its strong coupling to spin degree of freedom. However, direct experimental evidence of the chiral phonon-spin coupling is lacking. In this study, we report a chiral phonon-mediated interlayer exchange interaction in atomically controlled ferromagnetic metal (SrRuO3)-nonmagnetic insulator (SrTiO3) heterostructures. Owing to the unconventional interlayer exchange interaction, we have observed rotation of spins as a function of nonmagnetic insulating spacer thickness, resulting in a spin spiral state. The chiral phonon-spin coupling is further confirmed by phonon Zeeman effect. The existence of the chiral phonons and their interplay with spins along with our atomic-scale heterostructure approach unveil the crucial roles of chiral phonons in magnetic materials.

18.
Front Neurol ; 13: 955725, 2022.
Article in English | MEDLINE | ID: mdl-35989920

ABSTRACT

Background and purpose: There is much uncertainty in endovascular treatment (EVT) decisions in patients with acute large vessel occlusion (LVO) and mild neurological deficits. Methods: From a prospective, nationwide stroke registry, all patients with LVO and baseline NIHSS <6 presenting within 24 h from the time last known well (LKW) were included. Early neurological deterioration (END) developed before EVT was prospectively collected as an increasing total NIHSS score ≥2 or any worsening of the NIHSS consciousness or motor subscores during hospitalization not related to EVT. Significant hemorrhage was defined as PH2 hemorrhagic transformation or hemorrhage at a remote site. The modified Rankin Scale (mRS) was prospectively collected at 3 months. Results: Among 1,083 patients, 149 (14%) patients received EVT after a median of 5.9 [3.6-12.3] h after LKW. In propensity score-matched analyses, EVT was not associated with mRS 0-1 (matched OR 0.99 [0.63-1.54]) but increased the risk of a significant hemorrhage (matched OR, 4.51 [1.59-12.80]). Extraneous END occurred in 207 (19%) patients after a median of 24.5 h [IQR, 13.5-41.9 h] after LKW (incidence rate, 1.41 [95% CI, 1.23-1.62] per 100 person-hours). END unrelated to EVT showed a tendency to modify the effectiveness of EVT (P-for-interaction, 0.08), which decreased the odds of having mRS 0-1 in mild LVO patients without END (adjusted OR, 0.63 [0.40-0.99]). Conclusions: The use of EVT in patients with acute LVO and low NIHSS scores may require the assessment of individual risks of early deterioration, hemorrhagic complications and expected benefit.

19.
Phys Rev Lett ; 107(20): 200401, 2011 Nov 11.
Article in English | MEDLINE | ID: mdl-22181715

ABSTRACT

We examine the combined effects of Rashba spin-orbit (SO) coupling and rotation on trapped spinor Bose-Einstein condensates. The nature of single particle states is thoroughly examined in the Landau level basis and is shown to support the formation of a half-quantum vortex. In the presence of weak s-wave interactions, the ground state at strong SO coupling develops ringlike structures with domains whose number shows step behavior with increasing rotation. For the fast rotation case, the vortex pattern favors a triangular lattice, accompanied by density depletion in the central region and a weakened Skyrmionic character as the SO coupling is enhanced. Giant vortex formation is facilitated when SO coupling and rotation are both strong.

20.
Phys Rev Lett ; 107(13): 136804, 2011 Sep 23.
Article in English | MEDLINE | ID: mdl-22026888

ABSTRACT

We study the collective dynamics of the Skyrmion crystal in thin films of ferromagnetic metals resulting from the nontrivial Skyrmion topology. It is shown that the current-driven motion of the crystal reduces the topological Hall effect and the Skyrmion trajectories bend away from the direction of the electric current (the Skyrmion Hall effect). We find a new dissipation mechanism in noncollinear spin textures that can lead to a much faster spin relaxation than Gilbert damping, calculate the dispersion of phonons in the Skyrmion crystal, and discuss the effects of impurity pinning of Skyrmions.

SELECTION OF CITATIONS
SEARCH DETAIL