Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genomics ; 116(4): 110868, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795738

ABSTRACT

Hybrid sterility, a hallmark of postzygotic isolation, arises from parental genome divergence disrupting meiosis. While chromosomal incompatibility is often implicated, the underlying mechanisms remain unclear. This study investigated meiotic behavior and genome-wide divergence in bighead catfish (C. macrocephalus), North African catfish (C. gariepinus), and their sterile male hybrids (important in aquaculture). Repetitive DNA analysis using bioinformatics and cytogenetics revealed significant divergence in satellite DNA (satDNA) families between parental species. Notably, one hybrid exhibited successful meiosis and spermatozoa production, suggesting potential variation in sterility expression. Our findings suggest that genome-wide satDNA divergence, rather than chromosome number differences, likely contributes to meiotic failure and male sterility in these catfish hybrids.


Subject(s)
Catfishes , DNA, Satellite , Hybridization, Genetic , Meiosis , Animals , Catfishes/genetics , Male , DNA, Satellite/genetics , Infertility, Male/genetics , Infertility, Male/veterinary , Genome , North African People
2.
Chromosome Res ; 31(4): 34, 2023 11 29.
Article in English | MEDLINE | ID: mdl-38017297

ABSTRACT

Eukaryotes have varying numbers and structures of characteristic chromosomes across lineages or species. The evolutionary trajectory of species may have been affected by spontaneous genome rearrangements. Chromosome fusion drastically alters karyotypes. However, the mechanisms and consequences of chromosome fusions, particularly in muntjac species, are poorly understood. Recent research-based advancements in three-dimensional (3D) genomics, particularly high-throughput chromatin conformation capture (Hi-C) sequencing, have allowed for the identification of chromosome fusions and provided mechanistic insights into three muntjac species: Muntiacus muntjak, M. reevesi, and M. crinifrons. This study aimed to uncover potential genome rearrangement patterns in the threatened species Fea's muntjac (Muntiacus feae), which have not been previously examined for such characteristics. Deep Hi-C sequencing (31.42 × coverage) was performed to reveal the 3D chromatin architecture of the Fea's muntjac genome. Patterns of repeated chromosome fusions that were potentially mediated by high-abundance transposable elements were identified. Comparative Hi-C maps demonstrated linkage homology between the sex chromosomes in Fea's muntjac and autosomes in M. reevesi, indicating that fusions may have played a crucial role in the evolution of the sex chromosomes of the lineage. The species-level dynamics of topologically associated domains (TADs) suggest that TAD organization could be altered by differential chromosome interactions owing to repeated chromosome fusions. However, research on the effect of TADs on muntjac genome evolution is insufficient. This study generated Hi-C data for the Fea's muntjac, providing a genomic resource for future investigations of the evolutionary patterns of chromatin conformation at the chromosomal level.


Subject(s)
Chromatin , Muntjacs , Animals , Muntjacs/genetics , Chromatin/genetics , Chromosome Mapping/methods , Genome , Sex Chromosomes
3.
Chromosome Res ; 31(4): 29, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37775555

ABSTRACT

Microsatellites are short tandem DNA repeats, ubiquitous in genomes. They are believed to be under selection pressure, considering their high distribution and abundance beyond chance or random accumulation. However, limited analysis of microsatellites in single taxonomic groups makes it challenging to understand their evolutionary significance across taxonomic boundaries. Despite abundant genomic information, microsatellites have been studied in limited contexts and within a few species, warranting an unbiased examination of their genome-wide distribution in distinct versus closely related-clades. Large-scale comparisons have revealed relevant trends, especially in vertebrates. Here, "MicrosatNavigator", a new tool that allows quick and reliable investigation of perfect microsatellites in DNA sequences, was developed. This tool can identify microsatellites across the entire genome sequences. Using this tool, microsatellite repeat motifs were identified in the genome sequences of 186 vertebrates. A significant positive correlation was noted between the abundance, density, length, and GC bias of microsatellites and specific lineages. The (AC)n motif is the most prevalent in vertebrate genomes, showing distinct patterns in closely related species. Longer microsatellites were observed on sex chromosomes in birds and mammals but not on autosomes. Microsatellites on sex chromosomes of non-fish vertebrates have the lowest GC content, whereas high-GC microsatellites (≥ 50 M% GC) are preferred in bony and cartilaginous fishes. Thus, similar selective forces and mutational processes may constrain GC-rich microsatellites to different clades. These findings should facilitate investigations into the roles of microsatellites in sex chromosome differentiation and provide candidate microsatellites for functional analysis across the vertebrate evolutionary spectrum.


Subject(s)
Genome , Vertebrates , Animals , Vertebrates/genetics , Microsatellite Repeats , Sex Chromosomes/genetics , Genomics , Mammals/genetics
4.
Biochem Genet ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864964

ABSTRACT

Originating in Thailand, the Thai Ridgeback dog is known for its unique fur ridge that grows in the opposite direction along its back. Selective breeding and a limited populations in Thailand have led to significant close inbreeding among related individuals. The current Thai Ridgeback population is assumed to have experienced a loss of genetic diversity and bottleneck events. Furthermore, studies on the genetic diversity and structure of Thai Ridgeback dogs are limited. Therefore, the aim of this study was to assess the genetic diversity in Thai Ridgeback dogs. Microsatellite genotyping and mitochondrial DNA D-loop sequences were used to assess genetic diversity in 105 Thai Ridgeback dogs from various farms throughout Thailand. Significant genetic diversity and minimal inbreeding were observed in the current Thai Ridgeback population. Signs of bottlenecks were not observed because the exchange of genetic material among Thai Ridgeback owners effectively preserved the genetic diversity. Moreover, the genetic parameters in this study supported owner-to-owner exchanges animals for mating programs. To sustain the genetic diversity of Thai Ridgeback dogs, the use of genetic parameters to manage genetic closeness while preserving breed characteristics is essential. These data are crucial for ensuring demographic stability, which is pivotal for long-term conservation and effective population management.

5.
Microb Cell Fact ; 22(1): 96, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37161468

ABSTRACT

BACKGROUND: The use of probiotic lactic acid bacteria as a mucosal vaccine vector is considered a promising alternative compared to the use of other microorganisms because of its "Generally Regarded as Safe" status, its potential adjuvant properties, and its tolerogenicity to the host. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease (COVID-19), is highly transmissible and pathogenic. This study aimed to determine the potential of Lactiplantibacillus plantarum expressing SARS-CoV-2 epitopes as a mucosal vaccine against SARS-CoV-2. RESULTS: In this study, the possible antigenic determinants of the spike (S1-1, S1-2, S1-3, and S1-4), membrane (ME1 and ME2), and envelope (E) proteins of SARS-CoV-2 were predicted, and recombinant L. plantarum strains surface-displaying these epitopes were constructed. Subsequently, the immune responses induced by these recombinant strains were compared in vitro and in vivo. Most surface-displayed epitopes induced pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α and interleukin (IL)-6] and anti-inflammatory cytokines (IL-10) in lipopolysaccharide-induced RAW 264.7, with the highest anti-inflammatory to pro-inflammatory cytokine ratio in the S1-1 and S1-2 groups, followed by that in the S1-3 group. When orally administered of recombinant L. plantarum expressing SARS-CoV-2 epitopes in mice, all epitopes most increased the expression of IL-4, along with induced levels of TNF-α, interferon-gamma, and IL-10, specifically in spike protein groups. Thus, the surface expression of epitopes from the spike S1 protein in L. plantarum showed potential immunoregulatory effects, suggesting its ability to potentially circumvent hyperinflammatory states relevant to monocyte/macrophage cell activation. At 35 days post immunization (dpi), serum IgG levels showed a marked increase in the S1-1, S1-2, and S1-3 groups. Fecal IgA levels increased significantly from 21 dpi in all the antigen groups, but the boosting effect after 35 dpi was explicitly observed in the S1-1, S1-2, and S1-3 groups. Thus, the oral administration of SARS-CoV-2 antigens into mice induced significant humoral and mucosal immune responses. CONCLUSION: This study suggests that L. plantarum is a potential vector that can effectively deliver SARS-CoV-2 epitopes to intestinal mucosal sites and could serve as a novel approach for SARS-CoV-2 mucosal vaccine development.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Humans , Interleukin-10 , Immunity, Mucosal , Epitopes , Tumor Necrosis Factor-alpha , COVID-19 Vaccines , COVID-19/prevention & control , Immunization , Cytokines
6.
Antonie Van Leeuwenhoek ; 116(11): 1139-1150, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37658955

ABSTRACT

A non-motile, novel actinobacterial strain, Kera-3T, which is a gram-positive, aerobic, rod-shaped bacterium, was isolated from human keratinocytes on 1/10 diluted R2A agar. Whole-cell hydrolysis of amino acids revealed the presence of meso-DAP, alanine, and glutamic acid. The predominant menaquinone was MK-9 (H8), whereas the primary fatty acids were C16:0 and C18:1 ω9c. The major phospholipids included diphosphatidylglycerol and aminophospholipids, along with an unidentified phosphoglycolipid and an aminophosphoglycolipid. The G+C content of the genomic DNA was 73.2%, based on the complete genome sequence. Phylogenetic analyses of the 16S rRNA gene sequence and phylogenomic analysis of 91 core genes showed that strain Kera-3T formed a new lineage in the family Iamiaceae, with the closest neighbour Rhabdothermincola sediminis SYSU G02662T having 91.19% 16S rRNA gene sequence identity. A comparative genomic study of the predicted general metabolism and carbohydrate-active enzymes supported the phylogenetic and phylogenomic data. Based on the analysis of physiological, biochemical, and genomic characteristics, strain Kera-3T can be distinguished from known genera in the family Iamiaceae and represents a novel genus and species. Therefore, the name Dermatobacter hominis gen. nov., sp. nov. was proposed, with the type strain Kera-3T (= KACC 22415T = LMG 32493T).

7.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36902064

ABSTRACT

The present study investigated the effect of topical application of Epidermidibacterium Keratini (EPI-7) ferment filtrate, which is a postbiotic product of a novel actinobacteria, on skin aging, by performing a prospective randomized split-face clinical study on Asian woman participants. The investigators measured skin biophysical parameters, including skin barrier function, elasticity, and dermal density, and revealed that the application of the EPI-7 ferment filtrate-including test product resulted in significantly higher improvements in barrier function, skin elasticity, and dermal density compared to the placebo group. This study also investigated the influence of EPI-7 ferment filtrate on skin microbiome diversity to access its potential beneficial effects and safety. EPI-7 ferment filtrate increased the abundance of commensal microbes belonging to Cutibacterium, Staphylococcus, Corynebacterium, Streptococcus, Lawsonella, Clostridium, Rothia, Lactobacillus, and Prevotella. The abundance of Cutibacterium was significantly increased along with significant changes in Clostridium and Prevotella abundance. Therefore, EPI-7 postbiotics, which contain the metabolite called orotic acid, ameliorate the skin microbiota linked with the aging phenotype of the skin. This study provides preliminary evidence that postbiotic therapy may affect the signs of skin aging and microbial diversity. To confirm the positive effect of EPI-7 postbiotics and microbial interaction, additional clinical investigations and functional analyses are required.


Subject(s)
Actinomycetales , Propionibacteriaceae , Skin Aging , Humans , Prospective Studies , Skin/microbiology
8.
Sensors (Basel) ; 22(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35459001

ABSTRACT

The human skin sebum suggests that it (along with other epidermal surface lipids) plays a role in skin barrier formation, the moderation of cutaneous inflammation, and antimicrobial defense. Various methods have been developed for collecting and measuring skin sebum. We tested methods of detection using "color intensity", by staining the skin casual sebum. This process was conducted in three steps; first, the selection of materials for sebum collection; second, staining the collected sebum; third, the development of a device that can measure the level of stained sebum. A plastic film was used to effectively collect sebum that increased with the replacement time of the sebum. In addition, the collected sebum was stained with Oil Red O (ORO) and checked with RGB; as a result, the R2 value was higher than 0.9. It was also confirmed that the correlation value was higher than 0.9 in the comparison result with Sebumeter®, which is a common standard technology. Finally, it was confirmed that the R2 value was higher than 0.9 in the detection value using the sensor. In conclusion, we have proven the proof of concept (PoC) for this method, and we would like to introduce an effective sebum measurement method that differs from the existing method.


Subject(s)
Sebum , Skin , Azo Compounds , Humans , Staining and Labeling
9.
Clin Exp Rheumatol ; 39(4): 795-803, 2021.
Article in English | MEDLINE | ID: mdl-33124573

ABSTRACT

OBJECTIVES: To elucidate the clinical values of anti-M3R in Sjögren's syndrome (SS) in the largest cohort for an anti-M3R study. METHODS: The plasma of 361 subjects (156 primary SS [pSS], 62 non-SS-sicca [SICCA], 40 systemic lupus erythematosus [SLE], 50 rheumatoid arthritis [RA], and 53 healthy controls [HC]) was screened using our modified On-Cell-Western assay. Saliva from pSS (n=37) compared to SICCA (n=26) was also analysed. The sensitivity and specificity of anti-M3R and its association with comprehensive clinical and laboratory features were determined. RESULTS: Plasma-anti-M3R was higher in pSS compared to other groups, differentiating pSS with good-to-excellent diagnostic power with a specificity of 85% and a sensitivity between 75% and 98%. pSS plasma-anti-M3R was positively correlated with ocular staining scores, anti-Ro/SSA, IgG, ß2-microglobulin, ESR, and ESSDAI. It was negatively correlated with WBC, C4, and salivary scintigraphic indices. Saliva-anti-M3R was 3.59 times higher in pSS than in SICCA. Interestingly, the agreement between the 2002 American European Consensus Group criteria and the criteria substituted with plasma-anti-M3R for the lip biopsy reached 92%, with a significant kappa of 0.824. CONCLUSIONS: Anti-M3R enhances sensitivity and specificity for SS diagnosis, correlating with ocular dryness and glandular hypofunction, and the haematological/biological domains of the ESSDAI. Our findings also highlight the clinical significance of anti-M3R in SS diagnosis, especially where clinical assessments, such as lip biopsy, sialometry, or ocular evaluation, by multi-disciplinary specialists are limited.


Subject(s)
Arthritis, Rheumatoid , Lupus Erythematosus, Systemic , Sjogren's Syndrome , Autoantibodies , Humans , Saliva , Sjogren's Syndrome/diagnosis
10.
Int J Mol Sci ; 22(8)2021 Apr 11.
Article in English | MEDLINE | ID: mdl-33920455

ABSTRACT

Human endogenous retroviruses (HERVs) are suggested to be involved in the development of certain diseases, especially cancers. To elucidate the function of HERV-K Env protein in cancers, an HERV-K env gene knockout (KO) in DLD-1 colorectal cancer cell lines was generated using the CRISPR-Cas9 system. Transcriptome analysis of HERV-K env KO cells using next-generation sequencing (NGS) was performed to identify the key genes associated with the function of HERV-K Env protein. The proliferation of HERV-K env KO cells was significantly reduced in in vitro culture as well as in in vivo nude mouse model. Tumorigenic characteristics, including migration, invasion, and tumor colonization, were also significantly reduced in HERV-K env KO cells. Whereas, they were enhanced in HERV-K env over-expressing DLD-1 cells. The expression of nuclear protein-1 (NUPR1), an ER-stress response factor that plays an important role in cell proliferation, migration, and reactive oxygen species (ROS) generation in cancer cells, significantly reduced in HERV-K env KO cells. ROS levels and ROS-related gene expression was also significantly reduced in HERV-K env KO cells. Cells transfected with NUPR1 siRNA (small interfering RNA) exhibited the same phenotype as HERV-K env KO cells. These results suggest that the HERV-K env gene affects tumorigenic characteristics, including cell proliferation, migration, and tumor colonization through NUPR1 related pathway.


Subject(s)
Carcinogenesis , Colorectal Neoplasms , Endogenous Retroviruses , Gene Products, env/genetics , Neoplasm Proteins , Nuclear Receptor Subfamily 4, Group A, Member 2 , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Gene Knockdown Techniques , Gene Products, env/metabolism , HCT116 Cells , Humans , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
11.
Lancet Oncol ; 21(2): 306-316, 2020 02.
Article in English | MEDLINE | ID: mdl-31879220

ABSTRACT

BACKGROUND: Extranodal natural killer T-cell lymphoma (NKTCL; nasal type) is an aggressive malignancy with a particularly high prevalence in Asian and Latin American populations. Epstein-Barr virus infection has a role in the pathogenesis of NKTCL, and HLA-DPB1 variants are risk factors for the disease. We aimed to identify additional novel genetic variants affecting risk of NKTCL. METHODS: We did a genome-wide association study of NKTCL in multiple populations from east Asia. We recruited a discovery cohort of 700 cases with NKTCL and 7752 controls without NKTCL of Han Chinese ancestry from 19 centres in southern, central, and northern regions of China, and four independent replication samples including 717 cases and 12 650 controls. Three of these independent samples (451 cases and 5301 controls) were from eight centres in the same regions of southern, central, and northern China, and the fourth (266 cases and 7349 controls) was from 11 centres in Hong Kong, Taiwan, Singapore, and South Korea. All cases had primary NKTCL that was confirmed histopathologically, and matching with controls was based on geographical region and self-reported ancestry. Logistic regression analysis was done independently by geographical regions, followed by fixed-effect meta-analyses, to identify susceptibility loci. Bioinformatic approaches, including expression quantitative trait loci, binding motif and transcriptome analyses, and biological experiments were done to fine-map and explore the functional relevance of genome-wide association loci to the development of NKTCL. FINDINGS: Genetic data were gathered between Jan 1, 2008, and Jan 23, 2019. Meta-analysis of all samples (a total of 1417 cases and 20 402 controls) identified two novel loci significantly associated with NKTCL: IL18RAP on 2q12.1 (rs13015714; p=2·83 × 10-16; odds ratio 1·39 [95% CI 1·28-1·50]) and HLA-DRB1 on 6p21.3 (rs9271588; 9·35 × 10-26 1·53 [1·41-1·65]). Fine-mapping and experimental analyses showed that rs1420106 at the promoter of IL18RAP was highly correlated with rs13015714, and the rs1420106-A risk variant had an upregulatory effect on IL18RAP expression. Cell growth assays in two NKTCL cell lines (YT and SNK-6 cells) showed that knockdown of IL18RAP inhibited cell proliferation by cell cycle arrest in NKTCL cells. Haplotype association analysis showed that haplotype 47F-67I was associated with reduced risk of NKTCL, whereas 47Y-67L was associated with increased risk of NKTCL. These two positions are component parts of the peptide-binding pocket 7 (P7) of the HLA-DR heterodimer, suggesting that these alterations might account for the association at HLA-DRB1, independent of the previously reported HLA-DPB1 variants. INTERPRETATION: Our findings provide new insights into the development of NKTCL by showing the importance of inflammation and immune regulation through the IL18-IL18RAP axis and antigen presentation involving HLA-DRB1, which might help to identify potential therapeutic targets. Taken in combination with additional genetic and other risk factors, our results could potentially be used to stratify people at high risk of NKTCL for targeted prevention. FUNDING: Guangdong Innovative and Entrepreneurial Research Team Program, National Natural Science Foundation of China, National Program for Support of Top-Notch Young Professionals, Chang Jiang Scholars Program, Singapore Ministry of Health's National Medical Research Council, Tanoto Foundation, National Research Foundation Singapore, Chang Gung Memorial Hospital, Recruitment Program for Young Professionals of China, First Affiliated Hospital and Army Medical University, US National Institutes of Health, and US National Cancer Institute.


Subject(s)
Biomarkers, Tumor/genetics , Cell Proliferation , Interleukin-18 Receptor beta Subunit/genetics , Lymphoma, Extranodal NK-T-Cell/genetics , Natural Killer T-Cells/pathology , Asia , Biomarkers, Tumor/metabolism , Case-Control Studies , Cell Line, Tumor , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Interleukin-18/metabolism , Interleukin-18 Receptor beta Subunit/metabolism , Linkage Disequilibrium , Lymphoma, Extranodal NK-T-Cell/immunology , Lymphoma, Extranodal NK-T-Cell/metabolism , Lymphoma, Extranodal NK-T-Cell/pathology , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Phenotype , Prognosis , Quantitative Trait Loci , Risk Assessment , Risk Factors , Signal Transduction , Transcriptome
12.
Anal Biochem ; 600: 113769, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32430276

ABSTRACT

L1s are a cis-regulatory elements and contain bidirectional internal promoters within the 5' untranslated region (UTR). L1s provide bidirectional promoters that generate alternative transcripts and affect differential expressions in the human genome. In particular, L1 antisense promoters (L1ASPs) could produce aberrant transcripts in cancer tissues compared to normal tissues. In this study, we identified the L1-chimeric transcripts derived from L1ASPs and analyzed relative expression of L1-chimeric transcripts between normal and matched-cancer tissues. First, we collected 425 L1-chimeric transcripts by referring to previous studies. Through the manual inspection, we identified 144 L1-chimeric transcripts derived from 44 L1 antisense promoters, suggesting that the antisense promoter acted as an alternative promoter. We analyzed relative gene expression levels of 16 L1-chimeric transcripts between matched cancer-normal tissue pair (lung, liver, gastric, kidney, thyroid, breast, ovary, uterus, and prostate) using real-time quantitative PCR (RT-qPCR) and investigated putative transcription factor binding motifs to determine activity of L1ASPs. Taken together, we propose that L1ASPs could contribute to the differential gene expression between normal and cancer tissues.


Subject(s)
Long Interspersed Nucleotide Elements/genetics , Neoplasms/genetics , Gene Expression Profiling , Humans , Promoter Regions, Genetic/genetics , Real-Time Polymerase Chain Reaction , Transcription, Genetic/genetics
13.
Mikrochim Acta ; 187(10): 558, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32914337

ABSTRACT

A single-tube method based on a dual-electrostatic interaction (EI) strategy for bacteria capture and DNA extraction was designed to enable the highly sensitive detection of nucleic acids. Specially designed magnetic nanoparticles were developed to meet the opposing requirements of a single-tube method, which exist between the strong EI required for efficient bacteria capture and the weak EI required for DNA extraction with minimal DNA adsorption. A dual-EI strategy for the single-tube (DESIGN) method was thus developed to integrate bacteria enrichment, bacteria cell lysis, and DNA recovery in a single tube, thereby minimizing precious sample loss and reducing handling time. Subsequently, we evaluated the performance with a variety of concentrations from 5 to 100 colony-forming units (CFU)/10 mL human urine and milk samples. The DESIGN method achieved the simple and sensitive detection of Salmonella enterica serovar Typhimurium in 10 mL of human urine and milk samples up to 5 CFU by quantitative PCR. Furthermore, the DESIGN method detected Brucella ovis and Escherichia coli from 10 mL of human urine with a detection limit up to 5 CFU/10 mL. Graphical abstract.


Subject(s)
Gram-Negative Bacteria/metabolism , Nanoparticles/chemistry , Gram-Negative Bacteria/cytology , Humans , Static Electricity
14.
Mamm Genome ; 30(9-10): 289-300, 2019 10.
Article in English | MEDLINE | ID: mdl-31414176

ABSTRACT

Naturally occurring diseases in dogs provide an important animal model for studying human disease including cancer, heart disease, and autoimmune disorders. Transposable elements (TEs) make up ~ 31% of the dog (Canis lupus familiaris) genome and are one of main drivers to cause genomic variations and alter gene expression patterns of the host genes, which could result in genetic diseases. To detect structural variations (SVs), we conducted whole-genome sequencing of three different breeds, including Maltese, Poodle, and Yorkshire Terrier. Genomic SVs were detected and visualized using BreakDancer program. We identified a total of 2328 deletion SV events in the three breeds compared with the dog reference genome of Boxer. The majority of the genetic variants were found to be TE insertion polymorphism (1229) and the others were TE-mediated deletion (489), non-TE-mediated deletion (542), simple repeat-mediated deletion (32), and other indel (36). Among the TE insertion polymorphism, 286 elements were full-length LINE-1s (L1s). In addition, the 49 SV candidates located in the genic regions were experimentally verified and their polymorphic rates within each breed were examined using PCR assay. Polymorphism analysis of the genomic variants revealed that some of the variants exist polymorphic in the three dog breeds, suggesting that their SV events recently occurred in the dog genome. The findings suggest that TEs have contributed to the genomic variations among the three dog breeds of Maltese, Poodle, and Yorkshire Terrier. In addition, the polymorphic events between the dog breeds indicate that TEs were recently retrotransposed in the dog genome.


Subject(s)
Dogs/genetics , Genome , Animals , Breeding , DNA Transposable Elements , Dogs/classification , Dogs/physiology , Genetic Variation , INDEL Mutation
15.
Sens Actuators B Chem ; 254: 1249-1258, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29531428

ABSTRACT

A method for the design, construction, and assembly of modular, polymer-based, microfluidic devices using simple micro-assembly technology was demonstrated to build an integrated fluidic system consisting of vertically stacked modules for carrying out multi-step molecular assays. As an example of the utility of the modular system, point mutation detection using the ligase detection reaction (LDR) following amplification by the polymerase chain reaction (PCR) was carried out. Fluid interconnects and standoffs ensured that temperatures in the vertically stacked reactors were within ± 0.2 C° at the center of the temperature zones and ± 1.1 C° overall. The vertical spacing between modules was confirmed using finite element models (ANSYS, Inc., Canonsburg, PA) to simulate the steady-state temperature distribution for the assembly. Passive alignment structures, including a hemispherical pin-in-hole, a hemispherical pin-in-slot, and a plate-plate lap joint, were developed using screw theory to enable accurate exactly constrained assembly of the microfluidic reactors, cover sheets, and fluid interconnects to facilitate the modular approach. The mean mismatch between the centers of adjacent through holes was 64 ± 7.7 µm, significantly reducing the dead volume necessary to accommodate manufacturing variation. The microfluidic components were easily assembled by hand and the assembly of several different configurations of microfluidic modules for executing the assay was evaluated. Temperatures were measured in the desired range in each reactor. The biochemical performance was comparable to that obtained with benchtop instruments, but took less than 45 min to execute, half the time.

16.
Zoolog Sci ; 33(1): 73-7, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26853871

ABSTRACT

Chicken is one of the most popular domesticated species worldwide, as it can serve an important role in agricultural as well as biomedical research fields. Because it inhabits almost every continent and presents diverse morphology and traits, the need of genetic markers for distinguishing each breed for various purposes has increased. The whole genome sequencing of three different breeds (White Leghorn, Korean domestic, and Araucana) that show similar coloring patterns, with the exception of the White Leghorn breed, have confirmed previously reported genomic alterations and identified many novel variants. Additionally, the Whole Genome Re-Sequencing (WGRS) approach identified an approximately 4 kb insert within SLCO1B3 responsible for blue egg shell color. Targeted investigation of pigment-related genes corroborated previously reported non-synonymous mutations, and provided deeper insight into chicken coloring, where not a single but a combination of non-synonymous mutations in the MC1R gene is likely to be responsible for altered feather coloring.


Subject(s)
Chickens/genetics , Genetic Variation , Genome , Animals , Feathers/physiology , Gene Expression Regulation/physiology , Organic Anion Transporters, Sodium-Independent/genetics , Organic Anion Transporters, Sodium-Independent/metabolism , Phylogeny , Pigments, Biological , Receptor, Melanocortin, Type 1/genetics , Receptor, Melanocortin, Type 1/metabolism
17.
Int J Mol Sci ; 17(8)2016 Aug 09.
Article in English | MEDLINE | ID: mdl-27517910

ABSTRACT

The cause of inflammatory bowel disease (IBD) is still unknown, but there is growing evidence that environmental factors such as epigenetic changes can contribute to the disease etiology. The aim of this study was to identify newly hypermethylated genes in ulcerative colitis (UC) using a genome-wide DNA methylation approach. Using an Infinium HumanMethylation450 BeadChip array, we screened the DNA methylation changes in three normal colon controls and eight UC patients. Using these methylation profiles, 48 probes associated with CpG promoter methylation showed differential hypermethylation between UC patients and normal controls. Technical validations for methylation analyses in a larger series of UC patients (n = 79) were performed by methylation-specific PCR (MSP) and bisulfite sequencing analysis. We finally found that three genes (FAM217B, KIAA1614 and RIBC2) that were significantly elevating the promoter methylation levels in UC compared to normal controls. Interestingly, we confirmed that three genes were transcriptionally silenced in UC patient samples by qRT-PCR, suggesting that their silencing is correlated with the promoter hypermethylation. Pathway analyses were performed using GO and KEGG databases with differentially hypermethylated genes in UC. Our results highlight that aberrant hypermethylation was identified in UC patients which can be a potential biomarker for detecting UC. Moreover, pathway-enriched hypermethylated genes are possibly implicating important cellular function in the pathogenesis of UC. Overall, this study describes a newly hypermethylated gene panel in UC patients and provides new clinical information that can be used for the diagnosis and therapeutic treatment of IBD.


Subject(s)
Colitis, Ulcerative/genetics , DNA Methylation/genetics , Adult , Biomarkers , Epigenesis, Genetic/genetics , Humans , In Vitro Techniques , Polymerase Chain Reaction , Promoter Regions, Genetic/genetics
18.
Asian-Australas J Anim Sci ; 29(2): 184-94, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26732443

ABSTRACT

The peroxisome proliferator-activated receptor gamma (PPARγ) gene plays an important role in the biosynthesis process controlled by a number of fatty acid transcription factors. This study investigates the relationships between 130 single-nucleotide polymorphisms (SNPs) in the PPARγ gene and the fatty acid composition of muscle fat in the commercial population of Korean native cattle. We identified 38 SNPs and verified relationships between 3 SNPs (g.1159-71208 A>G, g.42555-29812 G>A, and g.72362 G>T) and the fatty acid composition of commercial Korean native cattle (n = 513). Cattle with the AA genotype of g.1159-71208 A>G and the GG genotype of g.42555-29812 G>A and g.72362 G>T had higher levels of monounsaturated fatty acids and carcass traits (p<0.05). The results revealed that the 3 identified SNPs in the PPARγ gene affected fatty acid composition and carcass traits, suggesting that these 3 SNPs may improve the flavor and quality of beef in commercial Korean native cattle.

19.
Appl Environ Microbiol ; 81(10): 3357-68, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25746991

ABSTRACT

The traditional markerless gene deletion technique based on overlap extension PCR has been used for generating gene deletions in multidrug-resistant Acinetobacter baumannii. However, the method is time-consuming because it requires restriction digestion of the PCR products in DNA cloning and the construction of new vectors containing a suitable antibiotic resistance cassette for the selection of A. baumannii merodiploids. Moreover, the availability of restriction sites and the selection of recombinant bacteria harboring the desired chimeric plasmid are limited, making the construction of a chimeric plasmid more difficult. We describe a rapid and easy cloning method for markerless gene deletion in A. baumannii, which has no limitation in the availability of restriction sites and allows for easy selection of the clones carrying the desired chimeric plasmid. Notably, it is not necessary to construct new vectors in our method. This method utilizes direct cloning of blunt-end DNA fragments, in which upstream and downstream regions of the target gene are fused with an antibiotic resistance cassette via overlap extension PCR and are inserted into a blunt-end suicide vector developed for blunt-end cloning. Importantly, the antibiotic resistance cassette is placed outside the downstream region in order to enable easy selection of the recombinants carrying the desired plasmid, to eliminate the antibiotic resistance cassette via homologous recombination, and to avoid the necessity of constructing new vectors. This strategy was successfully applied to functional analysis of the genes associated with iron acquisition by A. baumannii ATCC 19606 and to ompA gene deletion in other A. baumannii strains. Consequently, the proposed method is invaluable for markerless gene deletion in multidrug-resistant A. baumannii.


Subject(s)
Acinetobacter baumannii/genetics , Bacterial Proteins/genetics , Gene Deletion , Genetic Techniques , Acinetobacter Infections/microbiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Drug Resistance, Bacterial , Genetic Markers , Humans
20.
Arch Virol ; 160(9): 2161-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26088444

ABSTRACT

Human endogenous retroviruses (HERVs) account for approximately 8% of the human genome. To date, several HERV families have been identified in the human genome, with some being valid biomarkers for specific disease states. In this study, we have identified three HERV-Y elements in the human genome and characterized their structure and expression in various human tissues. New HERV-Y elements (HERV-Y101, HERV-Y102, and HERV-Y103) were detected on human chromosomes 8 and 13. In a pol-based phylogenetic tree, HERV-Y elements were closely grouped with HERV-I, -T, -E, and -R. The HERV-Y pol gene was expressed ubiquitously in all examined tissues, and it was dominantly expressed in the pons among the 12 different brain regions investigated. These results will allow future studies to elucidate the potential functional roles of HERVs in the brain and other tissues.


Subject(s)
Endogenous Retroviruses/genetics , Endogenous Retroviruses/isolation & purification , Gene Expression Profiling , Transcription, Genetic , Brain/virology , Chromosomes, Human, Pair 13/virology , Chromosomes, Human, Pair 8/virology , Gene Products, pol/genetics , Genotype , Humans , Phylogeny , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL