Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Int J Mol Sci ; 18(5)2017 May 10.
Article in English | MEDLINE | ID: mdl-28489026

ABSTRACT

Organic peroxides and hydroperoxides are skin tumor promoters. Free radical derivatives from these compounds are presumed to be the prominent mediators of tumor promotion. However, the molecular targets of these species are unknown. Phosphatase and tensin homologs deleted on chromosome 10 (PTEN) are tumor suppressors that play important roles in cell growth, proliferation, and cell survival by negative regulation of phosphoinositol-3-kinase/protein kinase B signaling. PTEN is reversibly oxidized in various cells by exogenous and endogenous hydrogen peroxide. Oxidized PTEN is converted back to the reduced form by cellular reducing agents, predominantly by the thioredoxin (Trx) system. Here, the role of tert-butyl hydroperoxide (t-BHP) in redox regulation of PTEN was analyzed by using cell-based and in vitro assays. Exposure to t-BHP led to oxidation of recombinant PTEN. In contrast to H2O2, PTEN oxidation by t-BHP was irreversible in HeLa cells. However, oxidized PTEN was reduced by exogenous Trx system. Taken together, these results indicate that t-BHP induces PTEN oxidation and inhibits Trx system, which results in irreversible PTEN oxidation in HeLa cells. Collectively, these results suggest a novel mechanism of t-BHP in the promotion of tumorigenesis.


Subject(s)
Hydrogen Peroxide/pharmacology , PTEN Phosphohydrolase/chemistry , tert-Butylhydroperoxide/pharmacology , HeLa Cells , Humans , Oxidation-Reduction , PTEN Phosphohydrolase/drug effects , PTEN Phosphohydrolase/metabolism , Thioredoxins/metabolism
2.
Methods ; 77-78: 58-62, 2015 May.
Article in English | MEDLINE | ID: mdl-25637034

ABSTRACT

PTEN is reversibly oxidized in various cells by exogenous hydrogen peroxide as well as by endogenous hydrogen peroxide generated when cells are stimulated with growth factors, cytokines and hormones. A gel mobility shift assay showed that oxidized PTEN migrated more rapidly than reduced PTEN on a non-reducing SDS-PAGE gel. Oxidized PTEN was reduced when treated with dithiothreitol. Supplementation of N-ethylmaleimide in the cell lysis buffer was critical for the apparent bands of oxidized and reduced PTEN. Formation of oxidized PTEN was abolished when the active site Cys(124) or nearby Cys(71) was replaced with Ser suggesting that Cys(124) and Cys(71) are involved in the formation of an intramolecular disulfide bond. These results show that the mobility shift assay is a convenient method to analyze the redox state of PTEN in cells.


Subject(s)
Electrophoresis, Polyacrylamide Gel/methods , PTEN Phosphohydrolase/analysis , PTEN Phosphohydrolase/metabolism , Tumor Suppressor Proteins/analysis , Tumor Suppressor Proteins/metabolism , Amino Acid Sequence , Animals , HeLa Cells , Humans , Mice , Molecular Sequence Data , NIH 3T3 Cells , Oxidation-Reduction , PTEN Phosphohydrolase/genetics , Rabbits , Tumor Suppressor Proteins/genetics
3.
Biochem Biophys Res Commun ; 407(1): 175-80, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21371429

ABSTRACT

Human PTEN (phosphatase and tensin homolog deleted on chromosome 10; a phosphatidylinositol 3-phosphatase) expressed in Saccharomyces cerevisiae was oxidized in a time- and H(2)O(2)-concentration-dependent manner. Oxidized hPTEN was reduced by cellular reductants as in human cells. The reduction rate of oxidized hPTEN was monitored in S. cerevisiae mutants in which the genes involved in redox homeostasis had been disrupted. Reduction of hPTEN was delayed in each of S. cerevisiae grx5Δ and ycp4Δ mutants. Expression of Grx5 and Ycp4 in each of the mutants rescued the reduction rate of oxidized hPTEN. Furthermore, an in vitro assay revealed that the human Grx5/GSH system efficiently catalyzed the reduction of oxidized hPTEN. These results suggest that the reduction of oxidized hPTEN is regulated by Grx5 and Ycp4.


Subject(s)
Flavodoxin/metabolism , Glutaredoxins/metabolism , PTEN Phosphohydrolase/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Glutaredoxins/genetics , Humans , Hydrogen Peroxide/metabolism , Molecular Sequence Data , Oxidation-Reduction , PTEN Phosphohydrolase/genetics , Saccharomyces cerevisiae/genetics
4.
Free Radic Biol Med ; 162: 141-148, 2021 01.
Article in English | MEDLINE | ID: mdl-33249138

ABSTRACT

Hepatic steatosis and subsequent fatty liver disease are developed in response to alcohol consumption. Reactive oxygen species (ROS) are thought to play an important role in the alcoholic fatty liver disease (AFLD). However, the molecular targets of ROS and the underlying cellular mechanisms are unknown. Here, we investigate roles of peroxiredoxin III and redox regulation of phosphatase and tension homolog deleted on chromosome 10 (PTEN) in the alcoholic fatty liver. Alcohol-induced mitochondrial oxidative stress was found to contribute to reversible oxidation of PTEN, which results in Akt and MAPK hyperactivation with elevated levels of the lipogenesis regulators SREBP1c and PPARγ. Moreover, mitochondrial peroxiredoxin III was found to have antagonistic effects on lipogenesis via the redox regulation of PTEN by removing ROS, upon alcohol exposure. This study demonstrated that redox regulation of PTEN and peroxiredoxin III play crucial roles in the development of AFLD.


Subject(s)
Fatty Liver, Alcoholic , Fatty Liver, Alcoholic/genetics , Fatty Liver, Alcoholic/metabolism , Humans , Lipogenesis , Liver/metabolism , Oxidation-Reduction , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Peroxiredoxin III/metabolism
5.
Redox Biol ; 34: 101553, 2020 07.
Article in English | MEDLINE | ID: mdl-32413744

ABSTRACT

Phosphatase and tensin homologs deleted on chromosome 10 (PTEN) is a potent tumor suppressor and often dysregulated in cancers. Cellular PTEN activity is restrained by the oxidation of active-site cysteine by reactive oxygen species (ROS). Recovery of its enzymatic activity predominantly depends on the availability of cellular thioredoxin (Trx) and peroxiredoxins (Prx), both are important players in cell signaling. Trx and Prx undergo redox-dependent conformational changes through the oxidation of cysteine residues at their active sites. Their dynamics are essential for protein functionality and regulation. In this review, we summarized the recent advances regarding the redox regulation of PTEN, with a specific focus on our current state-of-the-art understanding of the redox regulation of PTEN. We also proposed a tight association of the redox regulation of PTEN with Trx dimerization and Prx hyperoxidation, providing guidance for the identification of novel therapeutic targets.


Subject(s)
Peroxiredoxins , Thioredoxins , Cysteine , Oxidation-Reduction , PTEN Phosphohydrolase , Peroxiredoxins/metabolism , Reactive Oxygen Species , Signal Transduction , Thioredoxins/genetics , Thioredoxins/metabolism
6.
Antioxidants (Basel) ; 9(5)2020 May 05.
Article in English | MEDLINE | ID: mdl-32380763

ABSTRACT

Selenium is a vital trace element present as selenocysteine (Sec) in proteins that are, thus, known as selenoproteins. Humans have 25 selenoproteins, most of which are functionally characterized as oxidoreductases, where the Sec residue plays a catalytic role in redox regulation and antioxidant activity. Glutathione peroxidase plays a pivotal role in scavenging and inactivating hydrogen and lipid peroxides, whereas thioredoxin reductase reduces oxidized thioredoxins as well as non-disulfide substrates, such as lipid hydroperoxides and hydrogen peroxide. Selenoprotein R protects the cell against oxidative damage by reducing methionine-R-sulfoxide back to methionine. Selenoprotein O regulates redox homeostasis with catalytic activity of protein AMPylation. Moreover, endoplasmic reticulum (ER) membrane selenoproteins (SelI, K, N, S, and Sel15) are involved in ER membrane stress regulation. Selenoproteins containing the CXXU motif (SelH, M, T, V, and W) are putative oxidoreductases that participate in various cellular processes depending on redox regulation. Herein, we review the recent studies on the role of selenoproteins in redox regulation and their physiological functions in humans, as well as their role in various diseases.

7.
Oxid Med Cell Longev ; 2019: 2828493, 2019.
Article in English | MEDLINE | ID: mdl-31636803

ABSTRACT

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase that coordinates various cellular processes. Its activity is regulated by the reversible oxidation of an active-site cysteine residue by H2O2 and thioredoxin. However, the potential role of lipid peroxides in the redox regulation of PTEN remains obscure. To evaluate this, 15-hydroperoxy-eicosatetraenoic acid (15s-HpETE), a lipid peroxide, was employed to investigate its effect on PTEN using molecular and cellular-based assays. Exposure to 15s-HpETE resulted in the oxidation of recombinant PTEN. Reversible oxidation of PTEN was also observed in mouse embryonic fibroblast (MEF) cells treated with a 15s-HpETE and Lipofectamine mixture. The oxidative dimerization of thioredoxin was found simultaneously. In addition, the absence of peroxiredoxin III aggravated 15s-HpETE-induced PTEN oxidation in MEF cells. Our study provides novel insight into the mechanism linking lipid peroxidation to the etiology of tumorigenesis.


Subject(s)
Leukotrienes/therapeutic use , Lipid Peroxides/therapeutic use , PTEN Phosphohydrolase/drug effects , Peroxiredoxin III/therapeutic use , Animals , Humans , Leukotrienes/pharmacology , Lipid Peroxides/pharmacology , Mice , Oxidation-Reduction , Peroxiredoxin III/pharmacology , Transfection
8.
Environ Toxicol Pharmacol ; 24(2): 149-54, 2007 Sep.
Article in English | MEDLINE | ID: mdl-21783803

ABSTRACT

The effects of butyltin compounds on follicular steroidogenesis in amphibians were examined using ovarian follicles of Rana catesbeiana. Isolated follicles were cultured for 18h in the presence and absence of frog pituitary homogenate (FPH) or various steroid precursors, and the steroid levels in the follicles or culture media were measured by radioimmunoassay (RIA). Among the butyltin compounds, tributyltin (TBT) strongly inhibited the FPH-induced synthesis of pregnenolone (P(5)), progesterone (P(4)) and testosterone (T). It also inhibited the conversion of P(5)-P(4) and T to estradiol-17ß(E(2)) and it partially suppressed the conversion of androstenedione (AD) to T, but not P(4) to 17α-hydroxyprogesterone (17α-OHP(4)). A high concentration of dibutyltin (DBT) also inhibited steroidogenesis by the follicles while monobutyltin (MBT) and tetrabutylin (TeBT) had no effect. These results suggest that the initial step of steroidogenesis (P(5) synthesis) and enzymes such as 3ß-HSD, 17ß-HSD and aromatase are inhibited by TBT or DBT. However, 17α-hydroxylase was not suppressed by TBT or the other butyltin compounds.

9.
Article in English | WPRIM | ID: wpr-913905

ABSTRACT

The mechanism and action concerning epigenetic modifications, especially that of histone modifications, are not fully understood. However, it is clear that histone modifications play an essential role in several biological processes that are involved in cell proliferation and differentiation. In this article, we focused on how histone acetylation may result in differentiation into mesenchymal stem cells as well as histone acetylation function. Moreover, histone acetylation followed by the action of histone deacetylase inhibitors, which can result in the differentiation of stem cells into other types of cells such as adipocytes, chondrocytes, osteocytes, neurons, and other lineages, were also reviewed.

10.
Free Radic Biol Med ; 112: 277-286, 2017 11.
Article in English | MEDLINE | ID: mdl-28774816

ABSTRACT

Intracellular redox status influences the oxidation and enzyme activity of the tumor suppressor phosphatase and tensin homolog on chromosome 10 (PTEN). Cumene hydroperoxide (CuHP), an organic hydroperoxide, is a known tumor promoter. However, molecular targets and action mechanism of CuHP in tumor promotion have not been well characterized. In this study, we investigated the effect of CuHP on the redox state of PTEN in HeLa cells. In addition, the intracellular reducing system of oxidized PTEN was analyzed using a biochemical approach and the effect of CuHP on this reducing system was also analyzed. While PTEN oxidized by hydrogen peroxide is progressively converted to its reduced form, PTEN was irreversibly oxidized by exposure to CuHP in HeLa cells. A combination of protein fractionation and mass analysis showed that the reducing system of PTEN was comprised of NADPH, thioredoxin reductase (TrxR), and thioredoxin (Trx). Although CuHP-mediated PTEN oxidation was not reversible in cells, CuHP-oxidized PTEN was reactivated by the exogenous Trx system, indicating that the cellular Trx redox system for PTEN is inactivated by CuHP. We present evidence that PTEN oxidation and the concomitant inhibition of thioredoxin by CuHP results in irreversible oxidation of PTEN in HeLa cells. In addition, ablation of peroxiredoxin (Prdx) enhanced CuHP-induced PTEN oxidation in cells. These results provide a new line of evidence that PTEN might be a crucial determinant of cell fate in response to cellular oxidative stress induced by organic hydroperoxides.


Subject(s)
Benzene Derivatives/pharmacology , Carcinogens/pharmacology , Fibroblasts/drug effects , PTEN Phosphohydrolase/chemistry , Thioredoxin Reductase 1/metabolism , Thioredoxins/metabolism , Animals , Cell Line , Embryo, Mammalian , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression , HeLa Cells , Humans , Hydrogen Peroxide/pharmacology , Mice , NADP/metabolism , Oxidation-Reduction , Oxidative Stress , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thioredoxin Reductase 1/genetics , Thioredoxins/genetics
11.
PLoS One ; 9(4): e95518, 2014.
Article in English | MEDLINE | ID: mdl-24751718

ABSTRACT

Selenoproteins exhibit diverse biological functions, most of which are associated with redox control. However, the functions of approximately half of mammalian selenoproteins are not known. One such protein is Selenoprotein O (SelO), the largest mammalian selenoprotein with orthologs found in a wide range of organisms, including bacteria and yeast. Here, we report characterization of mammalian SelO. Expression of this protein could be verified in HEK 293T cells by metabolic labeling of cells with 75Se, and it was abolished when selenocysteine was replaced with serine. A CxxU motif was identified in the C-terminal region of SelO. This protein was reversibly oxidized in a time- and concentration-dependent manner in HEK 293T cells when cells were treated with hydrogen peroxide. This treatment led to the formation of a transient 88 kDa SelO-containing complex. The formation of this complex was enhanced by replacing the CxxU motif with SxxC, but abolished when it was replaced with SxxS, suggesting a redox interaction of SelO with another protein through its Sec residue. SelO was localized to mitochondria and expressed across mouse tissues. Its expression was little affected by selenium deficiency, suggesting it has a high priority for selenium supply. Taken together, these results show that SelO is a redox-active mitochondrial selenoprotein.


Subject(s)
Mammals/metabolism , Mitochondrial Proteins/metabolism , Selenoproteins/metabolism , Amino Acid Sequence , Animals , Diet , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Hydrogen Peroxide/pharmacology , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Molecular Sequence Data , Oxidation-Reduction/drug effects , Protein Transport/drug effects , Reproducibility of Results , Selenium/metabolism , Selenoproteins/chemistry , Selenoproteins/genetics
12.
Chonnam Medical Journal ; : 37-46, 2017.
Article in English | WPRIM | ID: wpr-67656

ABSTRACT

Cochlear sensory hair cells (HCs) are crucial for hearing as mechanoreceptors of the auditory systems. Clarification of transcriptional regulation for the cochlear sensory HC development is crucial for the improvement of cell replacement therapies for hearing loss. Transcription factor Atoh1 is the key player during HC development and regeneration. In this review, we will focus on Atoh1 and its related signaling pathways (Notch, fibroblast growth factor, and Wnt/β-catenin signaling) involved in the development of cochlear sensory HCs. We will also discuss the potential applicability of these signals for the induction of HC regeneration.


Subject(s)
Cochlea , Fibroblast Growth Factors , Hair Cells, Auditory , Hair , Hearing , Hearing Loss , Mechanoreceptors , Regeneration , Transcription Factors
13.
Chonnam Medical Journal ; : 37-46, 2017.
Article in English | WPRIM | ID: wpr-788362

ABSTRACT

Cochlear sensory hair cells (HCs) are crucial for hearing as mechanoreceptors of the auditory systems. Clarification of transcriptional regulation for the cochlear sensory HC development is crucial for the improvement of cell replacement therapies for hearing loss. Transcription factor Atoh1 is the key player during HC development and regeneration. In this review, we will focus on Atoh1 and its related signaling pathways (Notch, fibroblast growth factor, and Wnt/β-catenin signaling) involved in the development of cochlear sensory HCs. We will also discuss the potential applicability of these signals for the induction of HC regeneration.


Subject(s)
Cochlea , Fibroblast Growth Factors , Hair Cells, Auditory , Hair , Hearing , Hearing Loss , Mechanoreceptors , Regeneration , Transcription Factors
14.
Redox Rep ; 16(4): 181-6, 2011.
Article in English | MEDLINE | ID: mdl-21888769

ABSTRACT

Exposure of cells to hydrogen peroxide or platelet-derived growth factor (PDGF) induced Akt phosphorylation and oxidation of phosphatase and tensin homolog (PTEN). The Cys124 and Cys71 residues of PTEN were critical for the formation of a disulfide bond and the intermediate glutathionylation in the process of reduction of the disulfide bond. To determine which specific tyrosine residues of the PDGF beta receptor (PDGFßR) is involved in PDGF-induced PTEN oxidation and Akt phosphorylation, we investigated a kinase activity-deficient mutant and PDGFßR mutants where the tyrosine residues in the binding site for phosphoinositide 3-kinase (PI3K), GTPase-activating protein of Ras, Src homology 2 domain containing protein-tyrosine phosphatase-2, and phospholipase C-1 were replaced by Phe. Both PTEN oxidation and Akt phosphorylation did not occur in response to PDGF in the kinase-deficient mutant and in the PDGFßR mutant with a mutation in the PI3K binding site (Tyr740 and Tyr751). Thus, the kinase activity and the constituent Tyr740 and Tyr751 residues of PDGFßR in the cells stimulated with PDGF are responsible for the oxidation of PTEN and the Akt phosphorylation.


Subject(s)
Hydrogen Peroxide/pharmacology , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Signal Transduction/genetics , Binding Sites/genetics , Cell Culture Techniques , Enzyme Activation , Glutathione/metabolism , Humans , Mutation , Oxidation-Reduction/drug effects , PTEN Phosphohydrolase/drug effects , Phosphorylation/drug effects , Platelet-Derived Growth Factor/pharmacology , Proto-Oncogene Proteins c-akt/drug effects
15.
FEBS Lett ; 584(16): 3550-6, 2010 Aug 20.
Article in English | MEDLINE | ID: mdl-20637195

ABSTRACT

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expressed in Saccharomyces cerevisiae was reversibly oxidized by hydrogen peroxide and reduced by cellular reductants. Reduction of hPTEN was delayed in each of S. cerevisiae gsh1Delta and gsh2Delta mutants. Expression of gamma-glutamylcysteine synthetase Gsh1 in the gsh1Delta mutant rescued regeneration rate of hPTEN. Oxidized hPTEN was reduced by glutathione in a concentration- and time-dependent manner. Glutathionylated PTEN was detected. Incubation of 293T cells with BSO and knockdown expression of GCLc in HeLa cells by siRNA resulted in the delay of reduction of oxidized PTEN. Also, in HeLa cells transfected with GCLc siRNA, stimulation with epidermal growth factor resulted in the increase of oxidized PTEN and phosphorylation of Akt. These results suggest that the reduction of oxidized hPTEN is mediated by glutathione.


Subject(s)
Glutathione/metabolism , PTEN Phosphohydrolase/metabolism , Base Sequence , Cell Line , DNA Primers/genetics , Glutamate-Cysteine Ligase/antagonists & inhibitors , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Glutathione Synthase/genetics , Glutathione Synthase/metabolism , HeLa Cells , Humans , In Vitro Techniques , Models, Biological , Mutation , Oxidation-Reduction , PTEN Phosphohydrolase/genetics , RNA, Small Interfering/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
16.
Article in English | WPRIM | ID: wpr-34093

ABSTRACT

OBJECTIVES: In mammals, cochlear hair cell loss is irreversible and may result in a permanent sensorineural hearing loss. Secondary to this hair cell loss, a progressive loss of spiral ganglion neurons (SGNs) is presented. In this study, we have investigated the effects of neural-induced human mesenchymal stem cells (NI-hMSCs) from human bone marrow on sensory neuronal regeneration from neomycin treated deafened guinea pig cochleae. METHODS: HMSCs were isolated from the bone marrow which was obtained from the mastoid process during mastoidectomy for ear surgery. Following neural induction with basic fibroblast growth factor and forskolin, we studied the several neural marker and performed electrophysiological analysis. NI-hMSCs were transplanted into the neomycin treated deafened guinea pig cochlea. Engraftment of NI-hMSCs was evaluated immunohistologically at 8 weeks after transplantation. RESULTS: Following neural differentiation, hMSCs expressed high levels of neural markers, ionic channel markers, which are important in neural function, and tetrodotoxin-sensitive voltage-dependent sodium currents. After transplantation into the scala tympani of damaged cochlea, NI-hMSCs-injected animals exhibited a significant increase in the number of SGNs compared to Hanks balanced salt solution-injected animals. Transplanted NI-hMSCs were found within the perilymphatic space, the organ of Corti, along the cochlear nerve fibers, and in the spiral ganglion. Furthermore, the grafted NI-hMSCs migrated into the spiral ganglion where they expressed the neuron-specific marker, NeuN. CONCLUSION: The results show the potential of NI-hMSCs to give rise to replace the lost cochlear cells in hearing loss mammals.


Subject(s)
Animals , Humans , Bone Marrow , Cell Differentiation , Cochlea , Cochlear Nerve , Colforsin , Ear , Fibroblast Growth Factor 2 , Guinea Pigs , Hair , Hearing Loss , Hearing Loss, Sensorineural , Ion Channels , Mammals , Mastoid , Mesenchymal Stem Cells , Neomycin , Neurons , Organ of Corti , Regeneration , Scala Tympani , Sensory Receptor Cells , Sodium , Spiral Ganglion , Transplantation , Transplants
17.
Article in English | WPRIM | ID: wpr-727353

ABSTRACT

This study aimed to investigate the effect of pituitary adenylate cyclase-activating peptide (PACAP) on the pacemaker activity of interstitial cells of Cajal (ICC) in mouse colon and to identify the underlying mechanisms of PACAP action. Spontaneous pacemaker activity of colonic ICC and the effects of PACAP were studied using electrophysiological recordings. Exogenously applied PACAP induced hyperpolarization of the cell membrane and inhibited pacemaker frequency in a dose-dependent manner (from 0.1 nM to 100 nM). To investigate cyclic AMP (cAMP) involvement in the effects of PACAP on ICC, SQ-22536 (an inhibitor of adenylate cyclase) and cell-permeable 8-bromo-cAMP were used. SQ-22536 decreased the frequency of pacemaker potentials, and cell-permeable 8-bromo-cAMP increased the frequency of pacemaker potentials. The effects of SQ-22536 on pacemaker potential frequency and membrane hyperpolarization were rescued by co-treatment with glibenclamide (an ATP-sensitive K+ channel blocker). However, neither N(G)-nitro-L-arginine methyl ester (L-NAME, a competitive inhibitor of NO synthase) nor 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) had any effect on PACAP-induced activity. In conclusion, this study describes the effects of PACAP on ICC in the mouse colon. PACAP inhibited the pacemaker activity of ICC by acting through ATP-sensitive K+ channels. These results provide evidence of a physiological role for PACAP in regulating gastrointestinal (GI) motility through the modulation of ICC activity.


Subject(s)
Animals , Mice , 8-Bromo Cyclic Adenosine Monophosphate , Cell Membrane , Colon , Cyclic AMP , Glyburide , Interstitial Cells of Cajal , Membranes , NG-Nitroarginine Methyl Ester , Pituitary Adenylate Cyclase-Activating Polypeptide
18.
Article in Korean | WPRIM | ID: wpr-646927

ABSTRACT

BACKGROUND AND OBJECTIVES: Gentamicin (GM) is well known for its vestibulotoxicity. There have been many reports about vestibulotoxicity, however, its mechanism is still unclear. So far, it is known that GM affects the voltage-dependent K+ current and nitric oxide (NO) production. Epigallocatechin-3-gallate (EGCG) is the major component of green tea and is known to have anti-oxidative and anti-toxic effect. This study was undertaken to investigate the protective effect of EGCG against gentamicin on vestibular hair cell (VHC). MATERIALS AND METHOD: White guinea pigs (200-250 g) were rapidly decapitated and the temporal bones were immediately removed. Under a dissecting microscope, the crista ampullaris was obtained. The dissociated VHCs were transferred into a recording chamber mounted onto an inverted microscope. Whole-cell membrane currents and potentials were recorded using standard patch-clamp techniques. In addition, measurements of NO production were obtained using the NO-sensitive dye, 4,5-diamino-fluorescein diacetate (DAF-2DA). RESULTS: Type I VHCs Voltage-dependent K+ current was activated from low depolarizing stimulation. As the stimulation increased, higher current was detected. Voltage-dependent K+ current in type I VHCs was decreased when GM (200 microM) was administrated and GM effects of K+ current inhibition was significantly blocked by EGCG. Extracellular GM-induced an increase in DAF-2DA fluorescence, which thus indicates NO production in VHCs. Also, the GMinduced NO production was inhibited by EGCG. CONCLUSION: GM inhibits voltage-dependent K+ current by releasing NO in isolated type I VHCs. EGCG blocks this inhibitory effects, suggesting a protective role on GM vestibulotoxicity.


Subject(s)
Animals , Fluorescence , Gentamicins , Guinea Pigs , Hair Cells, Vestibular , Membranes , Nitric Oxide , Patch-Clamp Techniques , Semicircular Ducts , Tea , Temporal Bone
19.
Article in English | WPRIM | ID: wpr-727605

ABSTRACT

Interstitial cells of Cajal (ICCs) from the urinary bladder regulate detrusor smooth muscle activities. We cultured ICCs from the urinary bladder of mice and performed patch clamp and intracellular Ca2+ ([Ca2+]i) imaging to investigate whether cultured ICCs can be a valuable tool for cellular functional studies. The cultured ICCs displayed two types of spontaneous electrical activities which are similar to those recorded in intact bladder tissues. Spontaneous electrical activities of cultured ICCs were nifedipine-sensitive. Carbachol and ATP, both excitatory neurotransmitters in the urinary bladder, depolarized the membrane and increased the frequency of spike potentials. Carbachol increased [Ca2+]i oscillations and basal Ca2+ levels, which were blocked by atropine. These results suggest that cultured ICCs from the urinary bladder retain rhythmic phenotypes similar to the spontaneous electrical activities recorded from the intact urinary bladder. Therefore, we suggest that cultured ICCs from the urinary bladder may be useful for cellular and molecular studies of ICCs.


Subject(s)
Animals , Mice , Action Potentials , Adenosine Triphosphate , Atropine , Carbachol , Interstitial Cells of Cajal , Membranes , Muscle, Smooth , Neurotransmitter Agents , Phenotype , Urinary Bladder
20.
Chonnam Medical Journal ; : 155-159, 2011.
Article in English | WPRIM | ID: wpr-82693

ABSTRACT

This study was designed to investigate the effects an 8-Br-cGMP on the neuronal activity of rat vestibular nuclear cells. Sprague-Dawley rats aged 14 to 16 days were decapitated under ether anesthesia. After treatment with pronase and thermolysin, the dissociated vestibular nuclear cells were transferred into a chamber on an inverted microscope. Spontaneous action potentials and potassium currents were recorded by standard patch-clamp techniques under current and voltage-clamp modes. Twelve vestibular nuclear cells revealed excitatory responses to 1-5 microM of 8-Br-cGMP, and 3 neurons did not respond to 8-Br-cGMP. Whole potassium currents of vestibular nuclear cells were decreased by 8-Br-cGMP (n=12). After calcium-dependent potassium currents were blocked by tetraethylammonium, the potassium currents were not decreased by 8-Br-cGMP. These experimental results suggest that 8-Br-cGMP changes the neuronal activity of vestibular nuclear cells by blocking the calcium-dependent potassium currents that underlie the afterhyperpolarization.


Subject(s)
Aged , Animals , Humans , Rats , Action Potentials , Anesthesia , Ether , Neurons , Nucleotides, Cyclic , Patch-Clamp Techniques , Potassium , Pronase , Rats, Sprague-Dawley , Tetraethylammonium , Thermolysin
SELECTION OF CITATIONS
SEARCH DETAIL