Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Bioorg Med Chem Lett ; 107: 129792, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38734389

ABSTRACT

Ceramide 1-phosphate (C1P) is a lipid mediator that specifically binds and activates cytosolic phospholipase A2α (cPLA2α). To elucidate the structure-activity relationship of the affinity of C1P for cPLA2α in lipid environments, we prepared a series of C1P analogs containing structural modifications in the hydrophilic parts and subjected them to surface plasmon resonance (SPR). The results suggested the presence of a specific binding site for cPLA2α on the amide, 3-OH and phosphate groups in C1P structure. Especially, dihydro-C1P exhibited enhanced affinity for cPLA2α, suggesting the hydrogen bonding ability of 3-hydroxy group is important for interactions with cPLA2α. This study helps to understand the influence of specific structural moieties of C1P on the interaction with cPLA2α at the atomistic level and may lead to the design of drugs that regulate cPLA2α activation.


Subject(s)
Ceramides , Drug Design , Surface Plasmon Resonance , Ceramides/chemistry , Ceramides/chemical synthesis , Ceramides/metabolism , Structure-Activity Relationship , Group IV Phospholipases A2/metabolism , Group IV Phospholipases A2/antagonists & inhibitors , Humans , Molecular Structure , Binding Sites
2.
Langmuir ; 39(43): 15189-15199, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37729012

ABSTRACT

Although lateral and inter-leaflet lipid-lipid interactions in cell membranes play roles in maintaining asymmetric lipid bilayers, the molecular basis of these interactions is largely unknown. Here, we established a method to determine the distribution ratio of phospholipids between the outer and inner leaflets of asymmetric large unilamellar vesicles (aLUVs). The trimethylammonium group, (CH3)3N+, in the choline headgroup of N-palmitoyl-sphingomyelin (PSM) and 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) gave rise to a relatively sharp signal in magic-angle spinning solid-state 1H NMR (MAS-ss-1H NMR). PSM and DOPC have the same headgroup structure, but one phospholipid was selectively observed by deuterating the trimethylammonium group of the other phospholipid. The addition of Pr3+ to the medium surrounding aLUVs selectively shifted the chemical shift of the (CH3)3N+ group in the outer leaflet from that in the inner leaflet, which allowed estimation of the inter-leaflet distribution ratio of the unlabeled lipid in aLUVs. Using this method, we evaluated the translocation of PSM and DOPC between the outer and inner leaflets of the cholesterol-containing aLUVs, with PSM and DOPC mostly distributed in the outer and inner leaflets, respectively, immediately after aLUV preparation; their flip and flop rates were approximately 2.7 and 6.4 × 10-6 s-1, respectively. During the passive symmetrization of aLUVs, the lipid translocation rate was decreased due to changes in the membrane order, probably through the formation of the registered liquid-ordered domains. Comparison of the result with that of symmetric LUVs revealed that lipid asymmetry may not significantly affect the lipid translocation rates, while the lateral lipid-lipid interaction may be a dominant factor in lipid translocation under these conditions. These findings highlight the importance of considering the effects of lateral lipid interactions within the same leaflet on lipid flip-flop rates when evaluating the asymmetry of phospholipids in the cell membrane.


Subject(s)
Phospholipids , Sphingomyelins , Phospholipids/metabolism , Proton Magnetic Resonance Spectroscopy , Lipid Bilayers/chemistry , Lecithins , Unilamellar Liposomes/chemistry
3.
Biophys J ; 121(7): 1143-1155, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35218738

ABSTRACT

Lactosylceramide (LacCer) in the plasma membranes of immune cells is an important lipid for signaling in innate immunity through the formation of LacCer-rich domains together with cholesterol (Cho). However, the properties of the LacCer domains formed in multicomponent membranes remain unclear. In this study, we examined the properties of the LacCer domains formed in Cho-containing 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) membranes by deuterium solid-state NMR and fluorescence lifetimes. The potent affinity of LacCer-LacCer (homophilic interaction) is known to induce a thermally stable gel phase in the unitary LacCer bilayer. In LacCer/Cho binary membranes, Cho gradually destabilized the LacCer gel phase to form the liquid-ordered phase by its potent order effect. In the LacCer/POPC binary systems without Cho, the 2H NMR spectra of 10',10'-d2-LacCer and 18',18',18'-d3-LacCer probes revealed that LacCer was poorly miscible with POPC in the membranes and formed stable gel phases without being distributed in the liquid crystalline domain. The lamellar structure of the LacCer/POPC membrane was gradually disrupted at around 60°C, whereas the addition of Cho increased the thermal stability of the lamellarity. Furthermore, the area of the LacCer gel phase and its chain order were decreased in the LacCer/POPC/Cho ternary membranes, whereas the liquid-ordered domain, which was observed in the LacCer/Cho binary membrane, was not observed. Cho surrounding the LacCer gel domain liberated LacCer and facilitated forming the submicron to nano-scale small domains in the liquid crystalline domain of the LacCer/POPC/Cho membranes, as revealed by the fluorescence lifetimes of trans-parinaric acid and trans-parinaric acid-LacCer. Our findings on the membrane properties of the LacCer domains, particularly in the presence of Cho, would help elucidate the properties of the LacCer domains in biological membranes.


Subject(s)
Phosphatidylcholines , Phospholipids , Antigens, CD , Cholesterol/chemistry , Lactosylceramides , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Phospholipids/chemistry
4.
Langmuir ; 38(34): 10478-10491, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35984899

ABSTRACT

The ginsenoside Rh2 (Rh2) is a saponin of medicinal ginseng, and it has attracted much attention for its pharmacological activities. In this study, we investigated the interaction of Rh2 with biological membranes using model membranes. We examined the effects of various lipids on the membrane-disrupting activity of Rh2 and found that cholesterol and sphingomyelin (SM) had no significant effect. Furthermore, the effects of Rh2 on acyl chain packing (DPH anisotropy) and water molecule permeability (GP340 values) did not differ significantly between bilayers containing SM and saturated phosphatidylcholine. These results suggest that the formation of the liquid-ordered (Lo) phase affects the behavior of Rh2 in the membrane rather than a specific interaction of Rh2 with a particular lipid. We investigated the effects of Rh2 on the Lo and liquid-disordered (Ld) phases using surface tension measurements and fluorescence experiments. In the surface tension-area isotherms, we compared the monolayers of the Ld and Lo lipid compositions and found that Rh2 is abundantly bound to both monolayers, with the amount being greater in the Ld phase than in the Lo phase. In addition, the hydration state of the bilayers, mainly consisting of the Lo or Ld phase, showed that Rh2 tends to bind to the surface of the bilayer in both phases. At higher concentrations, Rh2 tends to bind more abundantly to the relatively shallow interior of the Ld phase than the Lo phase. The phase-dependent membrane behavior of Rh2 is probably due to the phase-selective affinity and binding mode of Rh2.


Subject(s)
Saponins , Triterpenes , Cholesterol/chemistry , Ginsenosides , Lecithins , Lipid Bilayers/chemistry , Membrane Microdomains/chemistry , Sphingomyelins
5.
Langmuir ; 38(48): 14695-14703, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36421004

ABSTRACT

Exosomes are small extracellular vesicles (sEVs) involved in distal cell-cell communication and cancer migration by transferring functional cargo molecules. Membrane domains similar to lipid rafts are assumed to occur in exosome membranes and are involved in interactions with target cells. However, the bilayer membrane properties of these small vesicles have not been fully investigated. Therefore, we examined the fluidity, lateral domain separation, and transbilayer asymmetry of exosome membranes using fluorescence spectroscopy. Although there were some differences between the exosomes, TMA-DPH anisotropy showing moderate lipid chain order indicated that ordered phases comprised a significant proportion of exosome membranes. Selective TEMPO quenching of the TMA-DPH fluorescence in the liquid-disordered phase indicated that 40-50% of the exosome membrane area belonged to the ordered phase based on a phase-separated model. Furthermore, NBD-PC in the outer leaflet showed longer fluorescence lifetimes than those in the inner leaflets. Therefore, the exosome membranes maintained transbilayer asymmetry with a topology similar to that of the plasma membranes. In addition, the lateral and transbilayer orders of exosome membranes obtained from different cell lines varied, probably depending on the different membrane lipid components and compositions partially derived from donor cells. As these higher membrane orders and asymmetric topologies are similar to those of cell membranes with lipid rafts, raft-like functional domains are possibly enriched on exosome membranes. These domains likely play key roles in the biological functions and cellular uptake of exosomes by facilitating selective membrane interactions with target organs.


Subject(s)
Exosomes , Membrane Fluidity , Spectrometry, Fluorescence , Lipid Bilayers/chemistry , Exosomes/metabolism , Cell Membrane/metabolism
6.
Org Biomol Chem ; 20(32): 6436-6444, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35880995

ABSTRACT

N-Myristoylation is a process of ubiquitous protein modification, which promotes the interaction of lipidated proteins on cell surfaces, in conjunction with reversible S-palmitoylation. We report the cooperative lipid-lipid interaction of two acyl chains of proteins, which increases the protein-membrane interaction and facilitates selective targeting of membranes containing anionic lipids. Lyn is a member of the Src family kinases distributed on the membrane surface by N-myristoyl and neighbouring S-palmitoyl chain anchors at the unique N-terminus domain. We prepared N-terminal short segments of lipidated Lyn to investigate the behaviour of each acyl chain in the lipid composition-dependent membrane interaction by solid-state nuclear magnetic resonance (NMR) analysis. Solid-state 31P-NMR studies revealed that S-palmitoylation of N-myristoylated Lyn peptides increased the interaction between peptides and phospholipid head groups, particularly with the anionic phosphatidylserine-containing bilayers. The solid-state 2H-NMR of Lyn peptides with a perdeutero N-myristoyl chain indicated an increase (0.6-0.8 Å) in the extent of the N-myristoyl chain in the presence of nearby S-palmitoyl chains, probably through the interaction via the acyl chains. The cooperative hydrocarbon chain interaction of the two acyl chains of Lyn increased membrane binding by extending the hydrocarbon chains deeper into the membrane interior, thereby promoting the peptide-membrane surface interaction between the cationic peptide side chains and the anionic lipid head groups. This lipid-driven mechanism by S-palmitoylation promotes the partition of the lipidated proteins to the cytoplasmic surface of the cell membranes and may be involved in recruiting Lyn at the signalling domains rich in anionic lipids.


Subject(s)
Lipid Bilayers , src-Family Kinases , Cell Membrane/metabolism , Lipid Bilayers/chemistry , Peptides/chemistry , Phospholipids , src-Family Kinases/chemistry , src-Family Kinases/metabolism
7.
Bioorg Med Chem Lett ; 36: 127816, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33516912

ABSTRACT

Diosgenin (DGN), which is a sterol occurring in plants of the Dioscorea family, has attracted increasing attention for its various pharmacological activities. DGN has a structural similarity to cholesterol (Cho). In this study we investigated the effects of the common tetracyclic cores and the different side chains on the physicochemical properties of lipid bilayer membranes. Differential scanning calorimetry showed that DGN and Cho reduce the phase transition enthalpy to a similar extent. In 2H NMR, deuterated-DGN/Cho and POPC showed similar ordering in POPC bilayers, which revealed that DGN is oriented parallel to the membrane normal like Cho. It was suggested that the affinity of DGN-Cho in membrane is stronger than that of DGN-DGN or Cho-Cho interaction. 31P NMR of POPC in bilayers revealed that, unlike Cho, DGN altered the interactions of POPC headgroups at 30 mol%. These results suggest that DGN below 30 mol% has similar effects with Cho on basic biomembrane properties.


Subject(s)
Cholesterol/chemistry , Diosgenin/chemistry , Lipid Bilayers/chemistry , Phospholipids/chemistry , Calorimetry, Differential Scanning , Chemistry, Physical , Dioscorea/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Thermodynamics
8.
Proc Natl Acad Sci U S A ; 115(10): 2389-2394, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29467288

ABSTRACT

Self-propagating ß-sheet-rich fibrillar protein aggregates, amyloid fibers, are often associated with cellular dysfunction and disease. Distinct amyloid conformations dictate different physiological consequences, such as cellular toxicity. However, the origin of the diversity of amyloid conformation remains unknown. Here, we suggest that altered conformational equilibrium in natively disordered monomeric proteins leads to the adaptation of alternate amyloid conformations that have different phenotypic effects. We performed a comprehensive high-resolution structural analysis of Sup35NM, an N-terminal fragment of the Sup35 yeast prion protein, and found that monomeric Sup35NM harbored latent local compact structures despite its overall disordered conformation. When the hidden local microstructures were relaxed by genetic mutations or solvent conditions, Sup35NM adopted a strikingly different amyloid conformation, which redirected chaperone-mediated fiber fragmentation and modulated prion strain phenotypes. Thus, dynamic conformational fluctuations in natively disordered monomeric proteins represent a posttranslational mechanism for diversification of aggregate structures and cellular phenotypes.


Subject(s)
Amyloid , Peptide Termination Factors , Prions , Saccharomyces cerevisiae Proteins , Amyloid/chemistry , Amyloid/metabolism , Kinetics , Nuclear Magnetic Resonance, Biomolecular , Peptide Termination Factors/chemistry , Peptide Termination Factors/genetics , Peptide Termination Factors/metabolism , Prions/chemistry , Prions/genetics , Prions/metabolism , Protein Conformation , Protein Folding , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
9.
Biophys J ; 119(3): 539-552, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32710823

ABSTRACT

Sphingomyelin (SM), a major component of small domains (or lipid rafts) in mammalian cell membranes, forms a liquid-ordered phase in the presence of cholesterol (Cho). However, the nature of molecular interactions within the ordered SM/Cho phase remains elusive. We previously revealed that stearoyl-SM (SSM) and its enantiomer (ent-SSM) separately form nano-subdomains within the liquid-ordered phase involving homophilic SSM-SSM and ent-SSM-ent-SSM interactions. In this study, the details of the subdomain formation by SSMs at the nanometer range were examined using Förster resonance energy transfer (FRET) measurements in lipid bilayers containing SSM and ent-SSM, dioleoyl-phosphatidylcholine and Cho. Although microscopy detected a stereochemical effect on partition coefficient favoring stereochemically homophilic interactions in the liquid-ordered state, it showed no significant difference in large-scale liquid-ordered domain formation by the two stereoisomers. In contrast to the uniform domains seen microscopy, FRET analysis using fluorescent donor- and acceptor-labeled SSM showed distinct differences in SM and ent-SM colocalization within nanoscale distances. Donor- and acceptor-labeled SSM showed significantly higher FRET efficiency than did donor-labeled SSM and acceptor-labeled ent-SSM in lipid vesicles composed of "racemic" (1:1) mixtures of SSM/ent-SSM with dioleoylphosphatidylcholine and Cho. The difference in FRET efficiency indicated that SSM and ent-SSM assemble to form separate nano-subdomains. The average size of the subdomains decreased as temperature increased, and at physiological temperatures, the subdomains were found to have a single-digit nanometer radius. These results suggest that (even in the absence of ent-SM) SM-SM interactions play a crucial role in forming nano-subdomains within liquid-ordered domains and may be a key feature of lipid microdomains (or rafts) in biological membranes.


Subject(s)
Phosphatidylcholines , Sphingomyelins , Animals , Cell Membrane , Cholesterol , Lipid Bilayers , Membrane Microdomains
10.
Langmuir ; 36(13): 3600-3610, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32160747

ABSTRACT

OSW-1, a unique steroidal saponin isolated from the bulbs of Ornithogalum saundersiae, has potent cell-growth inhibition activity. In this study, we conducted fluorescence measurements and microscopic observations using palmitoyloleoylphosphatidylcholine (POPC)-cholesterol (Chol) bilayers to evaluate the membrane-binding affinity of OSW-1 in comparison with another steroidal saponin, digitonin, and the triterpenoid saponin, soyasaponin Bb(I). The membrane activities of these saponins were evaluated using calcein leakage assays and fitted to the binding isotherm by changing the ratios of saponin-lipids. Digitonin showed the highest binding affinity for the POPC-Chol membrane (Kapp = 0.38 µM-1) and the strongest membrane disruptivity in the bound saponin-lipid ratio at the point of 50% calcein leakage (r50 = 0.47) occurrence. OSW-1 showed slightly lower activity (Kapp = 0.31 µM-1; r50 = 0.78), and the soyasaponin was the lowest in the membrane affinity and the calcein leakage activity (Kapp = 0.017 µM-1; r50 = 1.66). The effect of OSW-1 was further assessed using confocal microscopy in an experiment utilizing DiI and rhodamine 6G as the fluorescence probes. The addition of 30 µM OSW-1 induced inward membrane curvature in some giant unilamellar vesicles (GUVs). At the higher OSW-1 concentration (58 µM, r50 = 0.78) where the 50% calcein leakage was observed, the morphology of some GUVs became elongated. With digitonin at the corresponding concentration (35 µM, r50 = 0.47), membrane disruption and formation of large aggregates in aqueous solution were observed, probably due to a detergent-type mechanism. These saponins, including OSW-1, required Chol to exhibit their potent membrane activity although their mechanisms are thought to be different. At the effective concentration, OSW-1 preferably binds to the bilayers without prominent disruption of vesicles and exerts its activity through the formation of saponin-Chol complexes, probably resulting in membrane permeabilization.


Subject(s)
Lipid Bilayers , Saponins , Cholestenones , Digitonin
11.
Protein Expr Purif ; 172: 105631, 2020 08.
Article in English | MEDLINE | ID: mdl-32213313

ABSTRACT

CD1d is a major histocompatibility complex (MHC) class I-like glycoprotein and binds to glycolipid antigens that are recognized by natural killer T (NKT) cells. To date, our understanding of the structural basis for glycolipid binding and receptor recognition of CD1d is still limited. Here, we established a preparation method for the ectodomain of human and mouse CD1d using a silkworm-baculovirus expression system. The co-expression of human and mouse CD1d and ß2-microglobulin (ß2m) in the silkworm-baculovirus system was successful, but the yield of human CD1d was low. A construct of human CD1d fused with ß2m via a flexible GS linker as a single polypeptide was prepared to improve protein yield. The production of this single-chained complex was higher (50 µg/larva) than that of the co-expression complex. Furthermore, differential scanning calorimetry revealed that the linker made the CD1d complex more stable and homogenous. These results suggest that the silkworm-baculovirus expression system is useful for structural and biophysical studies of CD1d in several aspects including low cost, easy handling, biohazard-free, rapid, and high yielding.


Subject(s)
Antigens, CD1d , Baculoviridae , Gene Expression , Animals , Antigens, CD1d/biosynthesis , Antigens, CD1d/chemistry , Antigens, CD1d/genetics , Antigens, CD1d/isolation & purification , Bombyx , Humans , Mice , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
12.
Org Biomol Chem ; 18(15): 2902-2913, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32236234

ABSTRACT

Sialic acid-containing glycoconjugates are involved in important biological processes such as immune response, cancer metastasis, and viral infection. However, their chemical syntheses have been challenging, mainly due to the difficulties in the α-sialylation of oligosaccharides. Very recently, we established a completely stereoselective sialidation method using a macrobicyclic sialyl donor. Herein, we describe a rational and efficient synthesis of sialoglycolipids via direct sialylation of a glycolipid at a late-stage, based on our novel sialidation method. The synthetic method enabled the development of GM3 ganglioside analogs with various C5-modifications of the sialosyl moiety. Furthermore, the synthesized analog was subjected to solid-state 19F NMR analysis on the model membranes and it revealed the influence of cholesterol on glycan dynamics.

13.
Chirality ; 32(3): 282-298, 2020 03.
Article in English | MEDLINE | ID: mdl-31944412

ABSTRACT

Most phospholipids constituting biological membranes are chiral molecules with a hydrophilic head group and hydrophobic alkyl chains, rendering biphasic property characteristic of membrane lipids. Some lipids assemble into small domains via chirality-dependent homophilic and heterophilic interactions, the latter of which sometimes include cholesterol to form lipid rafts and other microdomains. On the other hand, lipid mediators and hormones derived from chiral lipids are recognized by specific membrane or nuclear receptors to induce downstream signaling. It is crucial to clarify the physicochemical properties of the lipid self-assembly for the study of the functions and behavior of biological membranes, which often become elusive due to effects of membrane proteins and other biological events. Three major lipids with different skeletal structures were discussed: sphingolipids including ceramides, phosphoglycerolipids, and cholesterol. The physicochemical properties of membranes and physiological functions of lipid enantiomers and diastereomers were described in comparison to natural lipids. When each enantiomer formed a self-assembly or interacted with achiral lipids, both lipid enantiomers exhibited identical membrane physicochemical properties, while when the enantiomer interacted with chiral lipids or with the opposite enantiomer, mixed membranes exhibited different properties. For example, racemic membranes comprising native sphingomyelin and its antipode exhibited phase segregation due to their strong homophilic interactions. Therefore, lipid enantiomers and diastereomers can be good probes to investigate stereospecific lipid-lipid and lipid-protein interactions occurring in biological membranes.


Subject(s)
Cholesterol/chemistry , Membrane Lipids/chemistry , Phospholipids/chemistry , Ceramides/chemistry , Glycerophospholipids/chemistry , Membrane Microdomains , Sphingomyelins/chemistry , Sphingosine/chemistry , Stereoisomerism , Sterols/chemistry
14.
Biophys J ; 117(2): 307-318, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31303249

ABSTRACT

Sphingomyelin (SM) and cholesterol (Cho) are the important lipids for the formation of biologically functional membrane domains, lipid rafts. However, the interaction between Cho and the headgroup of SM remains unclear. In this study, we performed solid-state NMR experiments to reveal the Cho effects on the headgroup conformation using 2H-labeled stearoyl-SM (SSM). Deuterated SSMs at the Cα, Cß, and Cγ positions of a choline moiety were separately prepared and subjected to NMR measurements to determine the quadrupolar splitting of 2H signals in hydrated SSM unitary and SSM/Cho (1:1) bilayers. Using 2H NMR and 13C-31P REDOR data, the conformation and orientation of the choline moiety were deduced and compared with those derived from molecular dynamics simulations. In SSM unitary bilayers, three torsional angles in the phosphocholine moiety, P-O-Cα-Cß, were found to be consecutive +gauche(g)/+g/+g or -g/-g/-g. The orientation and conformation of the SSM headgroup were consistent with the results of our molecular dynamics simulations and the previous results on phosphatidylcholines. The quadrupolar coupling at the α methylene group slightly increased in the presence of Cho, and those at the Cß and Cγ decreased more significantly, thus suggesting that Cho reduced the gauche conformation at the Cα-Cß torsion. The conformational ensemble in the presence of Cho may enhance the so-called umbrella effect of the SSM headgroup, resulting in the stabilization of Cho near the SM molecules by concealing the hydrophobic Cho core from interfacial water. We also examined the effect of the chiral centers at the sphingosine chain to the headgroup conformation by determining the enantiomeric excess between the diastereomeric +g/+g/+g and -g/-g/-g conformers using (S)-Cα-deuterated and (R)-Cα-deuterated SSMs. Their 2H NMR measurements showed that the chiral centers induced the slight diastereomeric excess in the SM headgroup conformation.


Subject(s)
Cholesterol/pharmacology , Molecular Conformation , Sphingomyelins/chemistry , Choline/chemistry , Deuterium/chemistry , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Probability , Stearic Acids/chemistry , Temperature
15.
Biochemistry ; 58(51): 5188-5196, 2019 12 24.
Article in English | MEDLINE | ID: mdl-31793296

ABSTRACT

Amphotericin B (AmB) is a polyene macrolide antibiotic clinically used as an antifungal drug. Its preferential complexation with ergosterol (Erg), the major sterol of fungal membranes, leads to the formation of a barrel-stave-like ion channel across a lipid bilayer. To gain a better understanding of the mechanism of action, the mode of lipid bilayer spanning provides essential information. However, because of the lack of methodologies to observe it directly, it has not been revealed for the Erg-containing channel assembly for many years. In this study, we disclosed that the AmB-Erg complex spans a lipid bilayer with a single-molecule length, using solid-state nuclear magnetic resonance (NMR) experiments. Paramagnetic relaxation enhancement by Mn2+ residing near the surface of lipid bilayers induced the depth-dependent decay of 13C NMR signals for individual carbon atoms of AmB. We found that both terminal segments, the 41-COOH group and C38-C40 methyl groups, come close to the lipid bilayer surfaces, suggesting that the AmB-Erg complex spans a palmitoyloleoylphosphatidylcholine (POPC) bilayer with a single-molecule length. Molecular dynamics simulation experiments further confirmed the stabilization of the AmB-Erg complex as a single-length spanning complex. These results provide experimental evidence of the single-length complex incorporated in the membrane by making thinner a POPC-Erg bilayer that mimics fungal membranes.


Subject(s)
Amphotericin B/metabolism , Ergosterol/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Magnetic Resonance Spectroscopy
16.
Biochemistry ; 58(17): 2282-2291, 2019 04 30.
Article in English | MEDLINE | ID: mdl-30973009

ABSTRACT

The clinically important antibiotic amphotericin B (AmB) is a membrane-active natural product that targets membrane sterol. The antimicrobial activity of AmB is generally attributed to its membrane permeabilization, which occurs when a pore is formed across a lipid bilayer. In this study, the molecular orientation of AmB was investigated using solid-state nuclear magnetic resonance (NMR) to better understand the mechanism of antifungal activity. The methyl ester of AmB (AME) labeled with NMR isotopes, d3-AME, and its fluorinated and/or 13C-labeled derivatives were prepared. All of the AmB derivatives showed similar membrane-disrupting activities and ultraviolet spectra in phospholipid liposomes, suggesting that their molecular assemblies in membranes closely mimic those of AmB. Solid-state 2H NMR measurements of d3-AME in a hydrated membrane showed that the mobility of AME molecules depends on concentration and temperature. At a 1:5:45 AME:Erg:dimyristoylphosphatidylcholine ratio, AME became sufficiently mobilized to observe the motional averaging of quadrupole coupling. On the basis of the rotational averaging effect of 19F chemical shift anisotropy, 2H quadrupolar splitting, and 13C-19F dipolar coupling of 14ß-F-AMEs, we deduced that the molecular axis of AME is predominantly parallel to the normal of a lipid bilayer. This result supports the barrel-stave model as a molecular assembly of AmB in membranes.


Subject(s)
Amphotericin B/analogs & derivatives , Antifungal Agents/chemistry , Ergosterol/chemistry , Lipid Bilayers/chemistry , Phospholipids/chemistry , Amphotericin B/chemistry , Amphotericin B/metabolism , Amphotericin B/pharmacology , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Cell Membrane/chemistry , Cell Membrane/drug effects , Ergosterol/metabolism , Fungi/cytology , Fungi/drug effects , Fungi/metabolism , Isotope Labeling , Lipid Bilayers/metabolism , Liposomes/chemistry , Liposomes/metabolism , Magnetic Resonance Spectroscopy/methods , Models, Chemical , Models, Molecular , Molecular Structure , Phospholipids/metabolism , Sterols/chemistry , Sterols/metabolism
17.
Chemistry ; 25(3): 796-805, 2019 Jan 14.
Article in English | MEDLINE | ID: mdl-30351481

ABSTRACT

The chemical synthesis of the highly branched core oligosaccharides of lipooligosaccharides (LOSs) found in Campylobacter jejuni, which causes Guillain-Barré syndrome by a preceding infection, is described. The target LOS mimics, consisting of eight or nine monosaccharides, were classified into three groups as key building blocks: ganglioside-core tetra-/pentasaccharides (GM1-/GD1a-like), l-glycero-d-manno-heptose-containing trisaccharides, and 3-deoxy-d-manno-2-octulosonic acid (KDO) residues. These synthetic fragments were obtained from commercially available monosaccharides. Less obtainable l-glycero-d-manno-heptose and KDO residues, as key components of the LOSs, were synthesized from p-methoxyphenyl d-mannoside and di-O-isopropylidene-protected d-mannose, respectively. The synthesis of α-KDO glycoside, as one of the most difficult stereocontrolled glycosidic constructions, was achieved by treating a 2,3-ene derivative of KDO with phenylselenyl trifluoromethanesulfonate as a suitable α-directing reagent. All synthetic blocks were constructed through a convergent synthetic route, which resulted in the first synthesis of structurally challenging LOS core glycans containing ganglioside GM1 and GD1a-core sequences.


Subject(s)
Campylobacter jejuni/metabolism , Lipopolysaccharides/chemistry , Oligosaccharides/chemical synthesis , Campylobacter Infections/complications , Campylobacter Infections/pathology , Gangliosides/chemistry , Glycosylation , Guillain-Barre Syndrome/etiology , Guillain-Barre Syndrome/immunology , Guillain-Barre Syndrome/pathology , Humans , Magnetic Resonance Spectroscopy , Oligosaccharides/chemistry , Trisaccharides/chemistry
18.
Org Biomol Chem ; 17(37): 8601-8610, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31528884

ABSTRACT

Cholesterol is an essential and ubiquitous component in mammalian cell membranes. However, its distributions and interactions with phospholipids are often elusive, partly because chemical modifications for preparing cholesterol probes often cause significant perturbations in its membrane behavior. To overcome these problems, a 2H-labeled probe (24-d-cholesterol), which perfectly retained the original membrane properties, was synthesized by a stereoselective introduction of 2H into the side chain of cholesterol. A deuterium label at the side-chain more sensitively reflects membrane fluidity than the conventional labeling at the 3 position of a sterol core (3-d-cholesterol), thus providing 24-d-cholesterol with desirable properties to report membrane ordering. Solid state 2H NMR of 24-d-cholesterol with sphingomyelins (SM) and unsaturated phosphatidylcholine in the bilayer membranes clearly revealed the partitioning ratio of cholesterol in the raft-like liquid ordered (Lo) phase and the liquid disordered phase based on cholesterol interactions with surrounding lipids in each phase. This probe turned out to be superior to the widely used 3-d-cholesterol; e.g., 24-d-cholesterol clearly revealed a 10 mol% difference in the Lo distribution ratios of cholesterol between palmitoyl-SM and stearoyl-SM. The comprehensive use of 24-d-cholesterol in solid state 2H NMR will disclose the cholesterol-lipid interactions, distribution ratio of cholesterol, and membrane ordering in model bilayers as well as more complicated biological membranes.


Subject(s)
Cell Membrane/chemistry , Cholesterol/chemistry , Molecular Probes/chemistry , Phospholipids/chemistry , Cholesterol/chemical synthesis , Molecular Conformation , Molecular Probes/chemical synthesis
19.
Proc Natl Acad Sci U S A ; 113(46): 13039-13044, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27799539

ABSTRACT

The 3D structure determination of biological macromolecules by X-ray crystallography suffers from a phase problem: to perform Fourier transformation to calculate real space density maps, both intensities and phases of structure factors are necessary; however, measured diffraction patterns give only intensities. Although serial femtosecond crystallography (SFX) using X-ray free electron lasers (XFELs) has been steadily developed since 2009, experimental phasing still remains challenging. Here, using 7.0-keV (1.771 Å) X-ray pulses from the SPring-8 Angstrom Compact Free Electron Laser (SACLA), iodine single-wavelength anomalous diffraction (SAD), single isomorphous replacement (SIR), and single isomorphous replacement with anomalous scattering (SIRAS) phasing were performed in an SFX regime for a model membrane protein bacteriorhodopsin (bR). The crystals grown in bicelles were derivatized with an iodine-labeled detergent heavy-atom additive 13a (HAD13a), which contains the magic triangle, I3C head group with three iodine atoms. The alkyl tail was essential for binding of the detergent to the surface of bR. Strong anomalous and isomorphous difference signals from HAD13a enabled successful phasing using reflections up to 2.1-Å resolution from only 3,000 and 4,000 indexed images from native and derivative crystals, respectively. When more images were merged, structure solution was possible with data truncated at 3.3-Å resolution, which is the lowest resolution among the reported cases of SFX phasing. Moreover, preliminary SFX experiment showed that HAD13a successfully derivatized the G protein-coupled A2a adenosine receptor crystallized in lipidic cubic phases. These results pave the way for de novo structure determination of membrane proteins, which often diffract poorly, even with the brightest XFEL beams.


Subject(s)
Bacterial Proteins/metabolism , Membrane Proteins/chemistry , Crystallization , Crystallography/methods , Detergents/chemistry , Electrons , Halobacterium , Lasers , Protein Conformation , Triiodobenzoic Acids/chemistry
20.
Angew Chem Int Ed Engl ; 58(51): 18697-18702, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31625659

ABSTRACT

The core fucose, a major modification of N-glycans, is implicated in immune regulation, such as the attenuation of the antibody-dependent cell-mediated cytotoxicity of antibody drugs and the inhibition of anti-tumor responses via the promotion of PD-1 expression on T cells. Although the core fucose regulates many biological processes, no core fucose recognition molecule has been identified in mammals. Herein, we report that Dectin-1, a known anti-ß-glucan lectin, recognizes the core fucose on IgG antibodies. A combination of biophysical experiments further suggested that Dectin-1 recognizes aromatic amino acids adjacent to the N-terminal asparagine at the glycosylation site as well as the core fucose. Thus, Dectin-1 appears to be the first lectin-like molecule involved in the heterovalent and specific recognition of characteristic N-glycans on antibodies.


Subject(s)
Fucose/metabolism , Immunoglobulin G/metabolism , Humans , Lectins, C-Type/metabolism , Ligands
SELECTION OF CITATIONS
SEARCH DETAIL