Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Cell ; 187(9): 2209-2223.e16, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670073

ABSTRACT

Nuclear factor κB (NF-κB) plays roles in various diseases. Many inflammatory signals, such as circulating lipopolysaccharides (LPSs), activate NF-κB via specific receptors. Using whole-genome CRISPR-Cas9 screens of LPS-treated cells that express an NF-κB-driven suicide gene, we discovered that the LPS receptor Toll-like receptor 4 (TLR4) is specifically dependent on the oligosaccharyltransferase complex OST-A for N-glycosylation and cell-surface localization. The tool compound NGI-1 inhibits OST complexes in vivo, but the underlying molecular mechanism remained unknown. We did a CRISPR base-editor screen for NGI-1-resistant variants of STT3A, the catalytic subunit of OST-A. These variants, in conjunction with cryoelectron microscopy studies, revealed that NGI-1 binds the catalytic site of STT3A, where it traps a molecule of the donor substrate dolichyl-PP-GlcNAc2-Man9-Glc3, suggesting an uncompetitive inhibition mechanism. Our results provide a rationale for and an initial step toward the development of STT3A-specific inhibitors and illustrate the power of contemporaneous base-editor and structural studies to define drug mechanism of action.


Subject(s)
CRISPR-Cas Systems , Hexosyltransferases , Lipopolysaccharides , Membrane Proteins , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Hexosyltransferases/metabolism , Hexosyltransferases/genetics , NF-kappa B/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Humans , Toll-Like Receptor 4/metabolism , Animals , CRISPR-Cas Systems/genetics , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Mice , HEK293 Cells , Inflammation/metabolism , Inflammation/genetics , Glycosylation , Cryoelectron Microscopy , Catalytic Domain , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
2.
Cell ; 184(4): 1064-1080.e20, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33606977

ABSTRACT

Understanding the functional consequences of single-nucleotide variants is critical to uncovering the genetic underpinnings of diseases, but technologies to characterize variants are limiting. Here, we leverage CRISPR-Cas9 cytosine base editors in pooled screens to scalably assay variants at endogenous loci in mammalian cells. We benchmark the performance of base editors in positive and negative selection screens, identifying known loss-of-function mutations in BRCA1 and BRCA2 with high precision. To demonstrate the utility of base editor screens to probe small molecule-protein interactions, we screen against BH3 mimetics and PARP inhibitors, identifying point mutations that confer drug sensitivity or resistance. We also create a library of single guide RNAs (sgRNAs) predicted to generate 52,034 ClinVar variants in 3,584 genes and conduct screens in the presence of cellular stressors, identifying loss-of-function variants in numerous DNA damage repair genes. We anticipate that this screening approach will be broadly useful to readily and scalably functionalize genetic variants.


Subject(s)
Gene Editing , Genetic Variation , High-Throughput Nucleotide Sequencing , Alleles , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Base Sequence , Catalytic Domain , Cell Line, Tumor , Humans , Loss of Function Mutation , Mutagenesis/genetics , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Point Mutation/genetics , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/genetics , Reproducibility of Results , Selection, Genetic , bcl-X Protein/genetics
3.
Cell ; 184(1): 76-91.e13, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33147444

ABSTRACT

Identification of host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may reveal novel therapeutic targets and inform our understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here we performed genome-wide CRISPR screens in Vero-E6 cells with SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), bat CoV HKU5 expressing the SARS-CoV-1 spike, and vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike. We identified known SARS-CoV-2 host factors, including the receptor ACE2 and protease Cathepsin L. We additionally discovered pro-viral genes and pathways, including HMGB1 and the SWI/SNF chromatin remodeling complex, that are SARS lineage and pan-coronavirus specific, respectively. We show that HMGB1 regulates ACE2 expression and is critical for entry of SARS-CoV-2, SARS-CoV-1, and NL63. We also show that small-molecule antagonists of identified gene products inhibited SARS-CoV-2 infection in monkey and human cells, demonstrating the conserved role of these genetic hits across species. This identifies potential therapeutic targets for SARS-CoV-2 and reveals SARS lineage-specific and pan-CoV host factors that regulate susceptibility to highly pathogenic CoVs.


Subject(s)
Coronavirus Infections/genetics , Genome-Wide Association Study , Host-Pathogen Interactions , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/immunology , COVID-19/virology , Cell Line , Chlorocebus aethiops , Clustered Regularly Interspaced Short Palindromic Repeats , Coronavirus/classification , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Gene Knockout Techniques , Gene Regulatory Networks , HEK293 Cells , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Host-Pathogen Interactions/drug effects , Humans , Vero Cells , Virus Internalization
4.
PLoS Biol ; 21(6): e3002097, 2023 06.
Article in English | MEDLINE | ID: mdl-37310920

ABSTRACT

Identifying host genes essential for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has the potential to reveal novel drug targets and further our understanding of Coronavirus Disease 2019 (COVID-19). We previously performed a genome-wide CRISPR/Cas9 screen to identify proviral host factors for highly pathogenic human coronaviruses. Few host factors were required by diverse coronaviruses across multiple cell types, but DYRK1A was one such exception. Although its role in coronavirus infection was previously undescribed, DYRK1A encodes Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A and is known to regulate cell proliferation and neuronal development. Here, we demonstrate that DYRK1A regulates ACE2 and DPP4 transcription independent of its catalytic kinase function to support SARS-CoV, SARS-CoV-2, and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) entry. We show that DYRK1A promotes DNA accessibility at the ACE2 promoter and a putative distal enhancer, facilitating transcription and gene expression. Finally, we validate that the proviral activity of DYRK1A is conserved across species using cells of nonhuman primate and human origin. In summary, we report that DYRK1A is a novel regulator of ACE2 and DPP4 expression that may dictate susceptibility to multiple highly pathogenic human coronaviruses.


Subject(s)
COVID-19 , Virus Internalization , Animals , Humans , Angiotensin-Converting Enzyme 2 , COVID-19/genetics , COVID-19/metabolism , Dipeptidyl Peptidase 4 , Middle East Respiratory Syndrome Coronavirus/genetics , SARS-CoV-2/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Dyrk Kinases
5.
J Bacteriol ; 204(7): e0018222, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35727033

ABSTRACT

Rickettsia spp. are obligate intracellular bacterial pathogens that have evolved a variety of strategies to exploit their host cell niche. However, the bacterial factors that contribute to this intracellular lifestyle are poorly understood. Here, we show that the conserved ankyrin repeat protein RARP-1 supports Rickettsia parkeri infection. Specifically, RARP-1 promotes efficient host cell entry and growth within the host cytoplasm, but it is not necessary for cell-to-cell spread or evasion of host autophagy. We further demonstrate that RARP-1 is not secreted into the host cytoplasm by R. parkeri. Instead, RARP-1 resides in the periplasm, and we identify several binding partners that are predicted to work in concert with RARP-1 during infection. Altogether, our data reveal that RARP-1 plays a critical role in the rickettsial life cycle. IMPORTANCERickettsia spp. are obligate intracellular bacterial pathogens that pose a growing threat to human health. Nevertheless, their strict reliance on a host cell niche has hindered investigation of the molecular mechanisms driving rickettsial infection. This study yields much-needed insight into the Rickettsia ankyrin repeat protein RARP-1, which is conserved across the genus but has not yet been functionally characterized. Earlier work had suggested that RARP-1 is secreted into the host cytoplasm. However, the results from this work demonstrate that R. parkeri RARP-1 resides in the periplasm and is important both for invasion of host cells and for growth in the host cell cytoplasm. These results reveal RARP-1 as a novel regulator of the rickettsial life cycle.


Subject(s)
Periplasm , Rickettsia , Ankyrin Repeat , Cytoplasm , Humans , Rickettsia/genetics , Rickettsia/metabolism
6.
BMC Cancer ; 16: 550, 2016 07 27.
Article in English | MEDLINE | ID: mdl-27465688

ABSTRACT

BACKGROUND: Platinum resistance is a major obstacle in the treatment of epithelial ovarian cancer (EOC). Activation of the AKT pathway promotes platinum resistance while inhibition of AKT sensitizes chemoresistant cells. Patients with BRCA mutant EOC, and thus a defect in the homologous recombination (HR) repair pathway, demonstrate greater clinical response to platinum and olaparib therapy than patients with BRCA wild-type EOC. MK-2206, an allosteric inhibitor of AKT phosphorylation, sensitizes a variety of cell types to various anticancer agents and is currently undergoing phase II trials as monotherapy for platinum-resistant ovarian, fallopian tube, and peritoneal cancer. This study examines the differential effects of AKT inhibition with cisplatin and olaparib therapy in BRCA1/2-deficient versus wild-type EOC. METHODS: PEO1, a chemosensitive BRCA2-mutant serous ovarian adenocarcinoma, and PEO4, a reverted BRCA2-proficient line from the same patient after the development of chemotherapeutic resistance, were primarily used for the study. In PEO1, MK-2206 demonstrated moderate to strong synergism with cisplatin and olaparib at all doses, while demonstrating antagonism at all doses in PEO4. RESULTS: Baseline phospho-AKT activity in untreated cells was upregulated in both BRCA1- and 2-deficient cell lines. MK-2206 prevented cisplatin- and olaparib-induced AKT activation in the BRCA2-deficient PEO1 cells. We propose that BRCA-deficient EOC cells upregulate baseline AKT activity to enhance survival in the absence of HR. Higher AKT activity is also required to withstand cytotoxic agent-induced DNA damage, leading to strong synergism between MK-2206 and cisplatin or olaparib therapy in BRCA-deficient cells. CONCLUSIONS: MK-2206 shows promise as a chemosensitization agent in BRCA-deficient EOC and merits clinical investigation in this patient population.


Subject(s)
BRCA1 Protein/genetics , Cisplatin/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Neoplasms, Glandular and Epithelial/genetics , Ovarian Neoplasms/genetics , Phthalazines/pharmacology , Piperazines/pharmacology , Carcinoma, Ovarian Epithelial , Cell Line, Tumor , Cell Survival/drug effects , Drug Synergism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mutation , Neoplasms, Glandular and Epithelial/drug therapy , Neoplasms, Glandular and Epithelial/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism
7.
Cancers (Basel) ; 15(15)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37568736

ABSTRACT

Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy, largely due to metastasis and drug resistant recurrences. Fifteen percent of ovarian tumors carry mutations in BRCA1 or BRCA2, rendering them vulnerable to treatment with PARP inhibitors such as olaparib. Recent studies have shown that TGFß can induce "BRCAness" in BRCA wild-type cancer cells. Given that TGFß is a known driver of epithelial to mesenchymal transition (EMT), and the connection between EMT and metastatic spread in EOC and other cancers, we asked if TGFß and EMT alter the susceptibility of EOC to PARP inhibition. Epithelial EOC cells were transiently treated with soluble TGFß, and their clonogenic potential, expression, and function of EMT and DNA repair genes, and response to PARP inhibitors compared with untreated controls. A second epithelial cell line was compared to its mesenchymal derivative for EMT and DNA repair gene expression and drug responses. We found that TGFß and EMT resulted in the downregulation of genes responsible for homologous recombination (HR) and sensitized cells to olaparib. HR efficiency was reduced in a dose-dependent manner. Furthermore, mesenchymal cells displayed sensitivity to olaparib, cisplatin, and the DNA-PK inhibitor Nu-7441. Therefore, the treatment of disseminated, mesenchymal tumors may represent an opportunity to expand the clinical utility of PARP inhibitors and similar agents.

8.
Nat Genet ; 55(3): 471-483, 2023 03.
Article in English | MEDLINE | ID: mdl-36894709

ABSTRACT

Identification of host determinants of coronavirus infection informs mechanisms of viral pathogenesis and can provide new drug targets. Here we demonstrate that mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) chromatin remodeling complexes, specifically canonical BRG1/BRM-associated factor (cBAF) complexes, promote severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and represent host-directed therapeutic targets. The catalytic activity of SMARCA4 is required for mSWI/SNF-driven chromatin accessibility at the ACE2 locus, ACE2 expression and virus susceptibility. The transcription factors HNF1A/B interact with and recruit mSWI/SNF complexes to ACE2 enhancers, which contain high HNF1A motif density. Notably, small-molecule mSWI/SNF ATPase inhibitors or degraders abrogate angiotensin-converting enzyme 2 (ACE2) expression and confer resistance to SARS-CoV-2 variants and a remdesivir-resistant virus in three cell lines and three primary human cell types, including airway epithelial cells, by up to 5 logs. These data highlight the role of mSWI/SNF complex activities in conferring SARS-CoV-2 susceptibility and identify a potential class of broad-acting antivirals to combat emerging coronaviruses and drug-resistant variants.


Subject(s)
COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , Chromatin , COVID-19/genetics , DNA Helicases/genetics , Nuclear Proteins/genetics , SARS-CoV-2 , Transcription Factors/genetics
9.
Nat Commun ; 13(1): 1318, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35288574

ABSTRACT

Numerous rationally-designed and directed-evolution variants of SpCas9 have been reported to expand the utility of CRISPR technology. Here, we assess the activity and specificity of WT-Cas9 and 10 SpCas9 variants by benchmarking their PAM preferences, on-target activity, and off-target susceptibility in cell culture assays with thousands of guides targeting endogenous genes. To enhance the coverage and thus utility of base editing screens, we demonstrate that the SpCas9-NG and SpG variants are compatible with both A > G and C > T base editors, more than tripling the number of guides and assayable residues. We demonstrate the performance of these technologies by screening for loss-of-function mutations in BRCA1 and Venetoclax-resistant mutations in BCL2, identifying both known and new mutations that alter function. We anticipate that the tools and methodologies described here will facilitate the investigation of genetic variants at a finer and deeper resolution for any locus of interest.


Subject(s)
CRISPR-Associated Protein 9 , Gene Editing , Benchmarking , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Gene Editing/methods , Proto-Oncogene Proteins c-bcl-2/genetics
10.
Nat Biotechnol ; 39(1): 94-104, 2021 01.
Article in English | MEDLINE | ID: mdl-32661438

ABSTRACT

Cas12a RNA-guided endonucleases are promising tools for multiplexed genetic perturbations because they can process multiple guide RNAs expressed as a single transcript, and subsequently cleave target DNA. However, their widespread adoption has lagged behind Cas9-based strategies due to low activity and the lack of a well-validated pooled screening toolkit. In the present study, we describe the optimization of enhanced Cas12a from Acidaminococcus (enAsCas12a) for pooled, combinatorial genetic screens in human cells. By assaying the activity of thousands of guides, we refine on-target design rules and develop a comprehensive set of off-target rules to predict and exclude promiscuous guides. We also identify 38 direct repeat variants that can substitute for the wild-type sequence. We validate our optimized AsCas12a toolkit by screening for synthetic lethalities in OVCAR8 and A375 cancer cells, discovering an interaction between MARCH5 and WSB2. Finally, we show that enAsCas12a delivers similar performance to Cas9 in genome-wide dropout screens but at greatly reduced library size, which will facilitate screens in challenging models.


Subject(s)
Bacterial Proteins , CRISPR-Associated Proteins , CRISPR-Cas Systems/genetics , Endodeoxyribonucleases , Gene Editing/methods , RNA, Guide, Kinetoplastida , Acidaminococcus/genetics , Apoptosis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , CRISPR-Associated Protein 9 , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , Cell Line, Tumor , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Gene Library , HEK293 Cells , Humans , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism
11.
Nat Biotechnol ; 38(7): 813-823, 2020 07.
Article in English | MEDLINE | ID: mdl-32284587

ABSTRACT

A large and ever-expanding set of CRISPR-Cas systems now enables the rapid and flexible manipulation of genomes in both targeted and large-scale experiments. Numerous software tools and analytical methods have been developed for the design and analysis of CRISPR-Cas experiments, including resources to design optimal guide RNAs for various modes of manipulation and to analyze the results of such experiments. A major recent focus has been the development of comprehensive tools for use on data from large-scale CRISPR-based genetic screens. As this field continues to progress, a clear ongoing challenge is not only to innovate, but to actively maintain and improve existing tools so that researchers across disciplines can rely on a stable set of excellent computational resources for CRISPR-Cas experiments.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing , RNA, Guide, Kinetoplastida/genetics , Software , Genetic Engineering/trends , Genome/genetics , Humans
12.
Nat Commun ; 11(1): 752, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32029722

ABSTRACT

Isogenic pairs of cell lines, which differ by a single genetic modification, are powerful tools for understanding gene function. Generating such pairs of mammalian cells, however, is labor-intensive, time-consuming, and, in some cell types, essentially impossible. Here, we present an approach to create isogenic pairs of cells that avoids single cell cloning, and screen these pairs with genome-wide CRISPR-Cas9 libraries to generate genetic interaction maps. We query the anti-apoptotic genes BCL2L1 and MCL1, and the DNA damage repair gene PARP1, identifying both expected and uncharacterized buffering and synthetic lethal interactions. Additionally, we compare acute CRISPR-based knockout, single cell clones, and small-molecule inhibition. We observe that, while the approaches provide largely overlapping information, differences emerge, highlighting an important consideration when employing genetic screens to identify and characterize potential drug targets. We anticipate that this methodology will be broadly useful to comprehensively study gene function across many contexts.


Subject(s)
Genetic Testing/methods , Apoptosis/genetics , CRISPR-Cas Systems , Cell Line , Clone Cells , Gene Knockout Techniques , Gene Library , Gene Regulatory Networks , Humans , Multigene Family , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/deficiency , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/deficiency , Poly (ADP-Ribose) Polymerase-1/genetics , Single-Cell Analysis , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/deficiency , bcl-X Protein/genetics
13.
bioRxiv ; 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32869025

ABSTRACT

Identification of host genes essential for SARS-CoV-2 infection may reveal novel therapeutic targets and inform our understanding of COVID-19 pathogenesis. Here we performed a genome-wide CRISPR screen with SARS-CoV-2 and identified known SARS-CoV-2 host factors including the receptor ACE2 and protease Cathepsin L. We additionally discovered novel pro-viral genes and pathways including the SWI/SNF chromatin remodeling complex and key components of the TGF-ß signaling pathway. Small molecule inhibitors of these pathways prevented SARS-CoV-2-induced cell death. We also revealed that the alarmin HMGB1 is critical for SARS-CoV-2 replication. In contrast, loss of the histone H3.3 chaperone complex sensitized cells to virus-induced death. Together this study reveals potential therapeutic targets for SARS-CoV-2 and highlights host genes that may regulate COVID-19 pathogenesis.

14.
Nat Commun ; 10(1): 5454, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31784531

ABSTRACT

CRISPR-Cas9 is an efficient and versatile tool for genome engineering in many species. However, inducible CRISPR-Cas9 editing systems that regulate Cas9 activity or sgRNA expression often suffer from significant limitations, including reduced editing capacity, off-target effects, or leaky expression. Here, we develop a precisely controlled sgRNA expression cassette that can be combined with widely-used Cre systems, termed CRISPR-Switch (SgRNA With Induction/Termination by Cre Homologous recombination). Switch-ON facilitates controlled, rapid induction of sgRNA activity. In turn, Switch-OFF-mediated termination of editing improves generation of heterozygous genotypes and can limit off-target effects. Furthermore, we design sequential CRISPR-Switch-based editing of two loci in a strictly programmable manner and determined the order of mutagenic events that leads to development of glioblastoma in mice. Thus, CRISPR-Switch substantially increases the versatility of gene editing through precise and rapid switching ON or OFF sgRNA activity, as well as switching OVER to secondary sgRNAs.


Subject(s)
Gene Editing/methods , Mouse Embryonic Stem Cells/metabolism , RNA, Guide, Kinetoplastida/genetics , Animals , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Genetic Engineering , Homologous Recombination , Integrases , Mice , Mutagenesis , RNA Polymerase III
15.
PLoS One ; 13(5): e0197547, 2018.
Article in English | MEDLINE | ID: mdl-29799876

ABSTRACT

Many implementations of pooled screens in mammalian cells rely on linking an element of interest to a barcode, with the latter subsequently quantitated by next generation sequencing. However, substantial uncoupling between these paired elements during lentiviral production has been reported, especially as the distance between elements increases. We detail that PCR amplification is another major source of uncoupling, and becomes more pronounced with increased amounts of DNA template molecules and PCR cycles. To lessen uncoupling in systems that use paired elements for detection, we recommend minimizing the distance between elements, using low and equal template DNA inputs for plasmid and genomic DNA during PCR, and minimizing the number of PCR cycles. We also present a vector design for conducting combinatorial CRISPR screens that enables accurate barcode-based detection with a single short sequencing read and minimal uncoupling.


Subject(s)
CRISPR-Cas Systems , DNA Barcoding, Taxonomic/methods , High-Throughput Nucleotide Sequencing/methods , Polymerase Chain Reaction/methods , RNA, Guide, Kinetoplastida/genetics , Cell Line, Tumor , Genetic Vectors , Humans , Lentivirus/genetics , Recombination, Genetic
16.
Nat Commun ; 9(1): 5416, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30575746

ABSTRACT

The creation of genome-wide libraries for CRISPR knockout (CRISPRko), interference (CRISPRi), and activation (CRISPRa) has enabled the systematic interrogation of gene function. Here, we show that our recently-described CRISPRko library (Brunello) is more effective than previously published libraries at distinguishing essential and non-essential genes, providing approximately the same perturbation-level performance improvement over GeCKO libraries as GeCKO provided over RNAi. Additionally, we present genome-wide libraries for CRISPRi (Dolcetto) and CRISPRa (Calabrese), and show in negative selection screens that Dolcetto, with fewer sgRNAs per gene, outperforms existing CRISPRi libraries and achieves comparable performance to CRISPRko in detecting essential genes. We also perform positive selection CRISPRa screens and demonstrate that Calabrese outperforms the SAM approach at identifying vemurafenib resistance genes. We further compare CRISPRa to genome-scale libraries of open reading frames (ORFs). Together, these libraries represent a suite of genome-wide tools to efficiently interrogate gene function with multiple modalities.


Subject(s)
CRISPR-Cas Systems , Genomic Library , CRISPR-Associated Protein 9 , Streptococcus pyogenes
SELECTION OF CITATIONS
SEARCH DETAIL