Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Arch Environ Contam Toxicol ; 76(1): 51-65, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30218120

ABSTRACT

The applicability of an in situ incubation method in monitoring the effects of metal mining on early life stages of fish was evaluated by investigating the impacts of a biomining technology utilizing mine on the mortality, growth, and yolk consumption of brown trout (Salmo trutta) and whitefish (Coregonus lavaretus) embryos. Newly fertilized eggs were incubated from autumn 2014 to spring 2015 in six streams under the influence of the mine located in North-Eastern Finland and in six reference streams. Although the impacted streams clearly had elevated concentrations of several metals and sulfate, the embryonic mortality of the two species did not differ between the impacted and the reference streams. Instead, particle accumulation to some cylinders had a significant impact on the embryonic mortality of both species. In clean cylinders, mortality was higher in streams with lower minimum pH. However, low pH levels were evident in both the reference and the mine-impacted groups. The embryonic growth of neither species was impacted by the mining activities, and the growth and yolk consumption of the embryos was mainly regulated by water temperature. Surprisingly, whitefish embryos incubated in streams with lower minimum pH had larger body size. In general, the applied in situ method is applicable in boreal streams for environmental assessment and monitoring, although in our study, we did not observe a specific mining impact differing from the effects of other environmental factors related to catchment characteristics.


Subject(s)
Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Environmental Monitoring/methods , Mining , Rivers/chemistry , Water Pollutants, Chemical/toxicity , Animals , Finland , Metals/analysis , Metals/toxicity , Salmonidae/embryology , Seasons , Sulfates/analysis , Sulfates/toxicity , Trout/embryology , Water Pollutants, Chemical/analysis
2.
Environ Toxicol Chem ; 41(1): 108-121, 2022 01.
Article in English | MEDLINE | ID: mdl-34826348

ABSTRACT

Gypsum (CaSO4 ∙2H2 O) amendment is a promising way of decreasing the phosphorus loading of arable lands, and thus preventing aquatic eutrophication. However, in freshwaters with low sulfate concentrations, gypsum-released sulfate may pose a threat to the biota. To assess such risks, we performed a series of sulfate toxicity tests in the laboratory and conducted field surveys. These field surveys were associated with a large-scale pilot exercise involving spreading gypsum on agricultural fields covering 18% of the Savijoki River (Finland) catchment area. The gypsum amendment in such fields resulted in approximately a four-fold increase in the mean sulfate concentration for a 2-month period, and a transient, early peak reaching approximately 220 mg/L. The sulfate concentration gradually decreased almost to the pregypsum level after 3 years. Laboratory experiments with Unio crassus mussels and gypsum-spiked river water showed significant effects on foot movement activity, which was more intense with the highest sulfate concentration (1100 mg/L) than with the control. Survival of the glochidia after 24 and 48 h of exposure was not significantly affected by sulfate concentrations up to 1000 mg/L, nor was the length growth of the moss Fontinalis antipyretica affected. The field studies on benthic algal biomass accrual, mussel and fish density, and Salmo trutta embryo survival did not show gypsum amendment effects. Gypsum treatment did not raise the sulfate concentrations even to a level just close to critical for the biota studied. However, because the effects of sulfate are dependent on both the spatial and the temporal contexts, we advocate water quality and biota monitoring with proper temporal and spatial control in rivers within gypsum treatment areas. Environ Toxicol Chem 2022;41:108-121. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Bivalvia , Water Pollutants, Chemical , Animals , Biota , Calcium Sulfate/toxicity , Risk Assessment , Rivers , Sulfates , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL