Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Publication year range
1.
PLoS Pathog ; 16(7): e1008591, 2020 07.
Article in English | MEDLINE | ID: mdl-32645118

ABSTRACT

Reactive arthritis, an autoimmune disorder, occurs following gastrointestinal infection with invasive enteric pathogens, such as Salmonella enterica. Curli, an extracellular, bacterial amyloid with cross beta-sheet structure can trigger inflammatory responses by stimulating pattern recognition receptors. Here we show that S. Typhimurium produces curli amyloids in the cecum and colon of mice after natural oral infection, in both acute and chronic infection models. Production of curli was associated with an increase in anti-dsDNA autoantibodies and joint inflammation in infected mice. The negative impacts on the host appeared to be dependent on invasive systemic exposure of curli to immune cells. We hypothesize that in vivo synthesis of curli contributes to known complications of enteric infections and suggest that cross-seeding interactions can occur between pathogen-produced amyloids and amyloidogenic proteins of the host.


Subject(s)
Arthritis, Infectious/immunology , Bacterial Proteins/immunology , Typhoid Fever/immunology , Animals , Antibodies, Antinuclear/immunology , Arthritis, Experimental/immunology , Arthritis, Experimental/metabolism , Arthritis, Infectious/metabolism , Bacterial Proteins/biosynthesis , Intestine, Large/immunology , Intestine, Large/microbiology , Mice , Typhoid Fever/metabolism
2.
PLoS Genet ; 15(6): e1008233, 2019 06.
Article in English | MEDLINE | ID: mdl-31233504

ABSTRACT

Pathogenic Salmonella strains that cause gastroenteritis are able to colonize and replicate within the intestines of multiple host species. In general, these strains have retained an ability to form the rdar morphotype, a resistant biofilm physiology hypothesized to be important for Salmonella transmission. In contrast, Salmonella strains that are host-adapted or even host-restricted like Salmonella enterica serovar Typhi, tend to cause systemic infections and have lost the ability to form the rdar morphotype. Here, we investigated the rdar morphotype and CsgD-regulated biofilm formation in two non-typhoidal Salmonella (NTS) strains that caused invasive disease in Malawian children, S. Typhimurium D23580 and S. Enteritidis D7795, and compared them to a panel of NTS strains associated with gastroenteritis, as well as S. Typhi strains. Sequence comparisons combined with luciferase reporter technology identified key SNPs in the promoter region of csgD that either shut off biofilm formation completely (D7795) or reduced transcription of this key biofilm regulator (D23580). Phylogenetic analysis showed that these SNPs are conserved throughout the African clades of invasive isolates, dating as far back as 80 years ago. S. Typhi isolates were negative for the rdar morphotype due to truncation of eight amino acids from the C-terminus of CsgD. We present new evidence in support of parallel evolution between lineages of nontyphoidal Salmonella associated with invasive disease in Africa and the archetypal host-restricted invasive serovar; S. Typhi. We hypothesize that the African invasive isolates are becoming human-adapted and 'niche specialized' with less reliance on environmental survival, as compared to gastroenteritis-causing isolates.


Subject(s)
Biological Evolution , Gastroenteritis/genetics , Salmonella Infections/genetics , Salmonella typhimurium/genetics , Africa/epidemiology , Biofilms/growth & development , Child , Gastroenteritis/epidemiology , Gastroenteritis/microbiology , Humans , Phylogeny , Polymorphism, Single Nucleotide/genetics , Salmonella Infections/microbiology , Salmonella Infections/transmission , Salmonella typhimurium/pathogenicity , Trans-Activators/genetics
3.
Bio Protoc ; 12(10): e4419, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35813019

ABSTRACT

Microbiologists are learning to appreciate the importance of "functional amyloids" that are produced by numerous bacterial species and have impacts beyond the microbial world. These structures are used by bacteria to link together, presumably to increase survival, protect against harsh conditions, and perhaps to influence cell-cell communication. Bacterial functional amyloids are also beginning to be appreciated in the context of host-pathogen interactions, where there is evidence that they can trigger the innate immune system and are recognized as non-self-molecular patterns. The characteristic three-dimensional fold of amyloids renders them similar across the bacterial kingdom and into the eukaryotic world, where amyloid proteins can be undesirable and have pathological consequences. The bacterial protein curli, produced by pathogenic Salmonella enterica and Escherichia coli strains, was one of the first functional amyloids discovered. Curli have since been well characterized in terms of function, and we are just starting to scratch the surface about their potential impact on eukaryotic hosts. In this manuscript, we present step-by-step protocols with pictures showing how to purify these bacterial surface structures. We have described the purification process from S. enterica, acknowledging that the same method can be applied to E. coli. In addition, we describe methods for detection of curli within animal tissues (i.e., GI tract) and discuss purifying curli intermediates in a S. enterica msbB mutant strain as they are more cytotoxic than mature curli fibrils. Some of these methods were first described elsewhere, but we wanted to assemble them together in more detail to make it easier for researchers who want to purify curli for use in biological experiments. Our aim is to provide methods that are useful for specialists and non-specialists as bacterial amyloids become of increasing importance.

4.
Can Geriatr J ; 25(1): 79-87, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35310473

ABSTRACT

Background: Long-term care (LTC) facilities require urgent, evidence-based care renewal. During 2020 three medical student-driven research projects aiming to study care satisfaction, patient care team dynamics, and advance care directive effectiveness in a local LTC facility required a marked shift in approach due to COVID-19 regulations. Methods: All three projects were re-invented as rapid reviews from their initial designs intended to provide a baseline for quality improvement projects. English-limited PubMed searches for publications within the past 10 years were undertaken. Review articles were prioritized and supplemented by individual studies. Students reviewed the initial abstracts, reviewed them with a supervisor/mentor, assessed the articles for quality, and synthesized major themes. Results: A total of 52 publications were evaluated for the final synthesis of all three projects. Relevant information was retrieved for all three areas, suitable for local evaluation/intervention at micro, meso, and macro policy levels. Conclusions: Rapid reviews of issue-specific, long-term care literature are low resource avenues towards coordinated care improvement. They may also serve as rapid means for regular policy updates while providing next-generation care providers with improved LTC perspectives.

5.
Microorganisms ; 8(7)2020 Jun 27.
Article in English | MEDLINE | ID: mdl-32604994

ABSTRACT

Among human food-borne pathogens, gastroenteritis-causing Salmonella strains have the most real-world impact. Like all pathogens, their success relies on efficient transmission. Biofilm formation, a specialized physiology characterized by multicellular aggregation and persistence, is proposed to play an important role in the Salmonella transmission cycle. In this manuscript, we used luciferase reporters to examine the expression of csgD, which encodes the master biofilm regulator. We observed that the CsgD-regulated biofilm system responds differently to regulatory inputs once it is activated. Notably, the CsgD system became unresponsive to repression by Cpx and H-NS in high osmolarity conditions and less responsive to the addition of amino acids. Temperature-mediated regulation of csgD on agar was altered by intracellular levels of RpoS and cyclic-di-GMP. In contrast, the addition of glucose repressed CsgD biofilms seemingly independent of other signals. Understanding the fine-tuned regulation of csgD can help us to piece together how regulation occurs in natural environments, knowing that all Salmonella strains face strong selection pressures both within and outside their hosts. Ultimately, we can use this information to better control Salmonella and develop strategies to break the transmission cycle.

SELECTION OF CITATIONS
SEARCH DETAIL