ABSTRACT
Aldosterone through the mineralocorticoid receptor MR has detrimental effects on cardiovascular disease. It reduces the bioavailability of nitric oxide and impairs endothelium-dependent vasodilatation. In resistance arteries, aldosterone impairs the sensitivity of vascular smooth muscle cells to nitric oxide by promoting the local secretion of histamine which activates H2 receptors. The present experiments tested in vivo and ex vivo the hypothesis that systemic H2-receptor antagonism reduces arterial blood pressure and improves vasodilatation in angiotensin II-induced chronic hypertension. Hypertension was induced by intravenous infusion of angiotensin II (60 ng kg-1 min-1) in conscious, unrestrained mice infused concomitantly with the H2-receptor antagonist ranitidine (27.8 µg kg-1 min-1) or vehicle for 24 days. Heart rate and arterial blood pressure were recorded by indwelling arterial catheter. Resistance (mesenteric) and conductance (aortae) arteries were harvested for perfusion myography and isometric tension recordings by wire myography, respectively. Plasma was analyzed for aldosterone concentration. ANGII infusion resulted in elevated arterial blood pressure and while in vivo treatment with ranitidine reduced plasma aldosterone concentration, it did not reduce blood pressure. Ranitidine improved ex vivo endothelial function (acetylcholine 10-9 to 10-6 mol L-1) in mesenteric resistance arteries. This was abolished by ex vivo treatment with aldosterone (10-9 mol L-1, 1 h). In aortic segments, in vivo ranitidine treatment impaired relaxation. Activation of histamine H2 receptors promotes aldosterone secretion, does not affect arterial blood pressure, and protects endothelial function in conduit arteries but promotes endothelial dysfunction in resistance arteries during angiotensin II-mediated hypertension. Aldosterone contributes little to angiotensin II-induced hypertension in mice.
Subject(s)
Aldosterone , Hypertension , Mice , Animals , Angiotensin II/pharmacology , Arterial Pressure , Histamine/pharmacology , Histamine H2 Antagonists/adverse effects , Ranitidine/adverse effects , Nitric Oxide , Blood Pressure , Endothelium, Vascular , Mesenteric ArteriesABSTRACT
Despite the recent advances in our understanding of the role of lipids, metabolites, and related enzymes in mediating kidney injury, there is limited integrated multi-omics data identifying potential metabolic pathways driving impaired kidney function. The limited availability of kidney biopsies from living donors with acute kidney injury has remained a major constraint. Here, we validated the use of deceased transplant donor kidneys as a good model to study acute kidney injury in humans and characterized these kidneys using imaging and multi-omics approaches. We noted consistent changes in kidney injury and inflammatory markers in donors with reduced kidney function. Neighborhood and correlation analyses of imaging mass cytometry data showed that subsets of kidney cells (proximal tubular cells and fibroblasts) are associated with the expression profile of kidney immune cells, potentially linking these cells to kidney inflammation. Integrated transcriptomic and metabolomic analysis of human kidneys showed that kidney arachidonic acid metabolism and seven other metabolic pathways were upregulated following diminished kidney function. To validate the arachidonic acid pathway in impaired kidney function we demonstrated increased levels of cytosolic phospholipase A2 protein and related lipid mediators (prostaglandin E2) in the injured kidneys. Further, inhibition of cytosolic phospholipase A2 reduced injury and inflammation in human kidney proximal tubular epithelial cells in vitro. Thus, our study identified cell types and metabolic pathways that may be critical for controlling inflammation associated with impaired kidney function in humans.
Subject(s)
Acute Kidney Injury , Phenotype , Humans , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/etiology , Male , Middle Aged , Metabolomics/methods , Female , Kidney Transplantation/adverse effects , Adult , Image Cytometry/methods , Kidney/pathology , Kidney/metabolism , Phospholipases A2/metabolism , Arachidonic Acid/metabolism , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Transcriptome , Dinoprostone/metabolism , Dinoprostone/analysis , Fibroblasts/metabolism , Gene Expression Profiling , Epithelial Cells/metabolism , Epithelial Cells/pathology , Biopsy , MultiomicsABSTRACT
Endothelial dysfunction develops with age and may precede cardiovascular disease. Animal data suggest that T-type calcium channels play an important role in endothelial function, but data from humans are lacking. This study included 15 healthy, sedentary, elderly males for a double blinded, randomized controlled trial. For 8 weeks, they were given 40 mg/day of either efonidipine (L- and T-type calcium channel blocker (CCB)) or nifedipine (L-type CCB). Vascular function was evaluated by graded femoral arterial infusions of acetylcholine (ACh; endothelium-dependent vasodilator) and sodium nitroprusside (endothelium-independent vasodilator) both with and without co-infusion of N-acetylcysteine (NAC; antioxidant). We measured leg blood flow and mean arterial pressure and calculated leg vascular conductance to evaluate the leg vascular responses. Despite no significant change in blood pressure in either group, we observed higher leg blood flow responses (Δ 0.43 ± 0.45 l/min, P = 0.006) and leg vascular conductance (Δ 5.38 ± 5.67 ml/min/mmHg, P = 0.005) to intra-arterial ACh after efonidipine, whereas there was no change in the nifedipine group, and no differences between groups. We found no upregulation of endothelial nitric oxide synthase in vastus lateralis muscle biopsies within or between groups. Smooth muscle cell responsiveness was unaltered by efonidipine or nifedipine. Intravenous co-infusion of NAC did not affect endothelium-dependent vasodilatation in either of the CCB groups. These results suggest that 8 weeks' inhibition of T- and L-type calcium channels augments endothelium-dependent vasodilatory function in healthy elderly males. Further studies are required to elucidate if T-type calcium channel inhibition can counteract endothelial dysfunction.
Subject(s)
Calcium Channel Blockers , Calcium Channels, T-Type , Endothelium, Vascular , Nifedipine , Nitrophenols , Humans , Male , Calcium Channels, T-Type/metabolism , Calcium Channels, T-Type/drug effects , Aged , Calcium Channel Blockers/pharmacology , Nifedipine/pharmacology , Pilot Projects , Double-Blind Method , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiology , Dihydropyridines/pharmacology , Vasodilation/drug effects , Vasodilation/physiology , Vasodilator Agents/pharmacology , Blood Pressure/drug effects , Blood Pressure/physiology , Regional Blood Flow/drug effects , Regional Blood Flow/physiology , Organophosphorus Compounds/pharmacology , Acetylcholine/pharmacology , Leg/blood supply , Nitroprusside/pharmacology , Middle AgedABSTRACT
Endothelial cell (EC) injury is a crucial contributor to the progression of diabetic kidney disease (DKD), but the specific EC populations and mechanisms involved remain elusive. Kidney ECs (n = 5464) were collected at three timepoints from diabetic BTBRob/ob mice and non-diabetic littermates. Their heterogeneity, transcriptional changes, and alternative splicing during DKD progression were mapped using SmartSeq2 single-cell RNA sequencing (scRNAseq) and elucidated through pathway, network, and gene ontology enrichment analyses. We identified 13 distinct transcriptional EC phenotypes corresponding to different kidney vessel subtypes, confirmed through in situ hybridization and immunofluorescence. EC subtypes along nephrons displayed extensive zonation related to their functions. Differential gene expression analyses in peritubular and glomerular ECs in DKD underlined the regulation of DKD-relevant pathways including EIF2 signaling, oxidative phosphorylation, and IGF1 signaling. Importantly, this revealed the differential alteration of these pathways between the two EC subtypes and changes during disease progression. Furthermore, glomerular and peritubular ECs also displayed aberrant and dynamic alterations in alternative splicing (AS), which is strongly associated with DNA repair. Strikingly, genes displaying differential transcription or alternative splicing participate in divergent biological processes. Our study reveals the spatiotemporal regulation of gene transcription and AS linked to DKD progression, providing insight into pathomechanisms and clues to novel therapeutic targets for DKD treatment.
Subject(s)
Alternative Splicing , Diabetic Nephropathies , Endothelial Cells , Single-Cell Analysis , Transcriptome , Animals , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Mice , Single-Cell Analysis/methods , Endothelial Cells/metabolism , Endothelial Cells/pathology , Kidney/metabolism , Kidney/pathology , Gene Expression Regulation , Transcription, Genetic , Gene Expression Profiling/methods , MaleABSTRACT
BACKGROUND: Endothelin A receptor antagonists (ETARA) slow chronic kidney disease (CKD) progression but their use is limited due to fluid retention and associated clinical risks. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) cause osmotic diuresis and improve clinical outcomes in CKD and heart failure. We hypothesized that co-administration of the SGLT2i dapagliflozin with the ETARA zibotentan would mitigate the fluid retention risk using hematocrit (Hct) and bodyweight as proxies for fluid retention. METHODS: Experiments were performed in 4% salt fed WKY rats. First, we determined the effect of zibotentan (30, 100 or 300 mg/kg/day) on Hct and bodyweight. Second, we assessed the effect of zibotentan (30 or 100 mg/kg/day) alone or in combination with dapagliflozin (3 mg/kg/day) on Hct and bodyweight. RESULTS: Hct at Day 7 was lower in zibotentan versus vehicle groups [zibotentan 30 mg/kg/day, 43% (standard error 1); 100 mg/kg/day, 42% (1); and 300 mg/kg/day, 42% (1); vs vehicle, 46% (1); P < .05], while bodyweight was numerically higher in all zibotentan groups compared with vehicle. Combining zibotentan with dapagliflozin for 7 days prevented the change in Hct [zibotentan 100 mg/kg/day and dapagliflozin, 45% (1); vs vehicle 46% (1); P = .44] and prevented the zibotentan-driven increase in bodyweight (zibotentan 100 mg/kg/day + dapagliflozin 3 mg/kg/day = -3.65 g baseline corrected bodyweight change; P = .15). CONCLUSIONS: Combining ETARA with SGLT2i prevents ETARA-induced fluid retention, supporting clinical studies to assess the efficacy and safety of combining zibotentan and dapagliflozin in individuals with CKD.
Subject(s)
Diabetes Mellitus, Type 2 , Renal Insufficiency, Chronic , Sodium-Glucose Transporter 2 Inhibitors , Symporters , Animals , Rats , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Endothelin A Receptor Antagonists , Receptor, Endothelin A , Rats, Inbred WKY , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Glucose , Sodium , Diabetes Mellitus, Type 2/drug therapyABSTRACT
Interleukin 17A (IL-17A) is a candidate mediator of inflammation-driven hypertension, but its direct effect on blood pressure is obscure. The present study was designed to test the hypothesis that systemic IL-17A concentration-dependently increases blood pressure and amplifies ANGII-induced hypertension in mice. Blood pressure was measured by indwelling chronic femoral catheters before and during IL-17A infusion w/wo angiotensin II (ANGII, 60ng/kg/min) in male FVB/n mice. Baseline blood pressure was recorded, and three experimental series were conducted: (1) IL-17A infusion with increasing concentrations over 6 days (two series with IL-17A from two vendors, n = 11); (2) ANGII infusion with IL-17A or vehicle for 9 days (n = 11); and (3) acute bolus infusions with four different concentrations (n = 5). Plasma IL-17A and IL-6 concentrations were determined by ELISA. Mean arterial and systolic blood pressures (MAP, SBP) decreased significantly after IL-17A infusion while heart rate was unchanged. In these mice, plasma IL-17A and IL-6 concentrations increased up to 3500- and 2.4-fold, respectively, above baseline. ANGII infusion increased MAP (~ 25 mmHg) and co-infusion of IL-17A attenuated ANGII-induced hypertension by 4.0 mmHg. Here, plasma IL-17A increased 350-fold above baseline. Acute IL-17A bolus infusion did not change blood pressure or heart rate. IL-17A receptor and IL-6 mRNAs were detected in aorta, heart, and kidneys of mice after IL-17A infusion. Nonphysiologically high concentrations of IL-17A reduce baseline blood pressure and increase IL-6 formation in male FVB/n mice. It is concluded that IL-17A is less likely to drive hypertension as the sole cytokine mediator during inflammation in vivo.
Subject(s)
Hypertension , Interleukin-17 , Angiotensin II/pharmacology , Animals , Blood Pressure/physiology , Hypertension/chemically induced , Inflammation , Interleukin-17/adverse effects , Interleukin-6 , Male , MiceABSTRACT
Diabetic kidney disease (DKD) is the leading cause of kidney failure worldwide. Mortality and morbidity associated with DKD are increasing with the global prevalence of type 2 diabetes. Chronic, sub-clinical, non-resolving inflammation contributes to the pathophysiology of renal and cardiovascular disease associated with diabetes. Inflammatory biomarkers correlate with poor renal outcomes and mortality in patients with DKD. Targeting chronic inflammation may therefore offer a route to novel therapeutics for DKD. However, the DKD patient population is highly heterogeneous, with varying etiology, presentation and disease progression. This heterogeneity is a challenge for clinical trials of novel anti-inflammatory therapies. Here, we present a conceptual model of how chronic inflammation affects kidney function in five compartments: immune cell recruitment and activation; filtration; resorption and secretion; extracellular matrix regulation; and perfusion. We believe that the rigorous alignment of pathophysiological insights, appropriate animal models and pathology-specific biomarkers may facilitate a mechanism-based shift from recruiting 'all comers' with DKD to stratification of patients based on the principal compartments of inflammatory disease activity.
Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Animals , Biomarkers , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetic Nephropathies/etiology , Humans , Inflammation/complications , Inflammation/drug therapy , KidneyABSTRACT
T-type Ca2+ channel Cav3.1 promotes microvessel contraction ex vivo. It was hypothesized that in vivo, functional deletion of Cav3.1, but not Cav3.2, protects mice against angiotensin II (ANG II)-induced hypertension. Mean arterial blood pressure (MAP) and heart rate were measured continuously with chronically indwelling catheters during infusion of ANG II (30 ng·kg-1·min-1, 7 days) in wild-type (WT), Cav3.1-/-, and Cav3.2-/- mice. Plasma aldosterone and renin concentrations were measured by radioimmunoassays. In a separate series, WT mice were infused with ANG II (100 ng·kg-1·min-1) with and without the mineralocorticoid receptor blocker canrenoate. Cav3.1-/- and Cav3.2-/- mice exhibited no baseline difference in MAP compared with WT mice, but day-night variation was blunted in both Cav3.1 and Cav3.2-/- mice. ANG II increased significantly MAP in WT, Cav3.1-/-, and Cav3.2-/- mice with no differences between genotypes. Heart rate was significantly lower in Cav3.1-/- and Cav3.2-/- mice compared with control mice. After ANG II infusion, plasma aldosterone concentration was significantly lower in Cav3.1-/- compared with Cav3.2-/- mice. In response to ANG II, fibrosis was observed in heart sections from both WT and Cav3.1-/- mice and while cardiac atrial natriuretic peptide mRNA was similar, the brain natriuretic peptide mRNA increase was mitigated in Cav3.1-/- mice ANG II at 100 ng/kg yielded elevated pressure and an increased heart weight-to-body weight ratio in WT mice. Cardiac hypertrophy, but not hypertension, was prevented by the mineralocorticoid receptor blocker canrenoate. In conclusion, T-type channels Cav3.1and Cav3.2 do not contribute to baseline blood pressure levels and ANG II-induced hypertension. Cav3.1, but not Cav3.2, contributes to aldosterone secretion. Aldosterone promotes cardiac hypertrophy during hypertension.
Subject(s)
Aldosterone/blood , Angiotensin II , Arterial Pressure , Calcium Channels, T-Type/deficiency , Hypertension/blood , Adrenal Glands/enzymology , Animals , Arterial Pressure/drug effects , Biomarkers/blood , Calcium Channels, T-Type/genetics , Canrenoic Acid/pharmacology , Cardiomegaly/blood , Cardiomegaly/genetics , Cardiomegaly/pathology , Cytochrome P-450 CYP11B2/metabolism , Disease Models, Animal , Female , Fibrosis , Hypertension/genetics , Hypertension/physiopathology , Hypertension/prevention & control , Male , Mice, Inbred C57BL , Mice, Knockout , Mineralocorticoid Receptor Antagonists/pharmacology , Myocardium/metabolism , Myocardium/pathology , Receptors, Angiotensin/metabolism , Renin/bloodABSTRACT
Impairment of endothelial function with aging is accompanied by reduced nitric oxide (NO) production. T-type Cav3.1 channels augment nitric oxide and co-localize with eNOS. Therefore, the hypothesis was that T-type channels contribute to the endothelial dysfunction of aging. Endothelial function was determined in mesenteric arteries (perfusion) and aortae (isometric contraction) of young and old wild-type (WT), Cav3.1, and Cav3.2 knockout mice. NO production was measured by fluorescence imaging in mesenteric arteries. With age, endothelium-dependent subsequent dilatation (following depolarization with KCl) of mesenteric arteries was diminished in the arteries of WT mice, unchanged in Cav3.2-/- preparations but increased in those of Cav3.1-/- mice. NO synthase inhibition abolished the subsequent dilatation in mesenteric arteries and acetylcholine-induced relaxations in aortae. NO levels were significantly reduced in mesenteric arteries of old compared to young WT mice. In Cav3.1-/- and Cav3.2-/- preparations, NO levels increased significantly with age. Relaxations to acetylcholine were significantly smaller in the aortae of old compared to young WT mice, while such responses were comparable in preparations of young and old Cav3.1-/- and Cav3.2-/- mice. The expression of Cav3.1 was significantly reduced in aortae from aged compared to young WT mice. The level of phosphorylated eNOS was significantly increased in aortae from aged Cav3.1-/- mice. In conclusion, T-type calcium channel-deficient mice develop less age-dependent endothelial dysfunction. Changes in NO levels are involved in this phenomenon in WT and Cav3.1-/- mice. These findings suggest that T-type channels play an important role in age-induced endothelial dysfunction.
Subject(s)
Aging/metabolism , Calcium Channels, T-Type/metabolism , Endothelium, Vascular/physiology , Aging/physiology , Animals , Aorta/growth & development , Aorta/metabolism , Aorta/physiology , Calcium Channels, T-Type/genetics , Endothelium, Vascular/metabolism , Female , Gene Deletion , Male , Mesenteric Arteries/growth & development , Mesenteric Arteries/metabolism , Mesenteric Arteries/physiology , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism , Vasoconstriction , VasodilationABSTRACT
Mouse adipocytes have been reported to release aldosterone and reduce endothelium-dependent relaxation. It is unknown whether perivascular adipose tissue (PVAT) releases aldosterone in humans. The present experiments were designed to test the hypothesis that human PVAT releases aldosterone and induces endothelial dysfunction. Vascular reactivity was assessed in human internal mammary and renal segmental arteries obtained at surgery. The arteries were prepared with/without PVAT, and changes in isometric tension were measured in response to the vasoconstrictor thromboxane prostanoid receptor agonist U46619 and the endothelium-dependent vasodilator acetylcholine. The effects of exogenous aldosterone and of mineralocorticoid receptor (MR) antagonist eplerenone were determined. Aldosterone concentrations were measured by ELISA in conditioned media incubated with human adipose tissue with/without angiotensin II stimulation. Presence of aldosterone synthase and MR mRNA was examined in perirenal, abdominal, and mammary PVAT by PCR. U46619 -induced tension and acetylcholine-induced relaxation were unaffected by exogenous and endogenous aldosterone (addition of aldosterone and MR blocker) in mammary and renal segmental arteries, both in the presence and absence of PVAT. Aldosterone release from incubated perivascular fat was not detectable. Aldosterone synthase expression was not consistently observed in human adipose tissues in contrast to that of MR. Thus, exogenous aldosterone does not affect vascular reactivity and endothelial function in ex vivo human arterial segments, and the tested human adipose tissues have no capacity to synthesize/release aldosterone. In perspective, physiologically relevant effects of aldosterone on vascular function in humans are caused by systemic aldosterone originating from the adrenal gland.
Subject(s)
Adipose Tissue/metabolism , Aldosterone/metabolism , Mammary Arteries/metabolism , Paracrine Communication , Renal Artery/metabolism , Vasoconstriction , Aged , Culture Media, Conditioned/metabolism , Female , Humans , Male , Mammary Arteries/surgery , Middle Aged , Renal Artery/surgery , Secretory Pathway , Signal Transduction , Tissue Culture TechniquesABSTRACT
OBJECTIVE: Arterial injury stimulates remodeling responses that, when excessive, lead to stenosis. These responses are influenced by integrin signaling in vascular smooth muscle cells (VSMCs). Microfibrillar-associated protein 4 (MFAP4) is an integrin ligand localized to extracellular matrix fibers in the vascular wall. The role of MFAP4 in vascular biology is unknown. We aimed to test the hypothesis that MFAP4 would enhance integrin-dependent VSMC activation. APPROACH AND RESULTS: We produced Mfap4-deficient (Mfap4(-/-)) mice and performed carotid artery ligation to explore the role of MFAP4 in vascular biology in vivo. Furthermore, we investigated the effects of MFAP4 in neointimal formation ex vivo and in primary VSMC and monocyte cultures in vitro. When challenged with carotid artery ligation, Mfap4(-/-) mice exhibited delayed neointimal formation, accompanied by early reduction in the number of proliferating medial and neointimal cells, as well as infiltrating leukocytes. Delayed neointimal formation was associated with decreased cross-sectional area of ligated Mfap4(-/-) carotid arteries resulting in lumen narrowing 28 days after ligation. MFAP4 blockade prohibited the formation of neointimal hyperplasia ex vivo. Moreover, we demonstrated that MFAP4 is a ligand for integrin αVß3 and mediates VSMC phosphorylation of focal adhesion kinase, migration, and proliferation in vitro. MFAP4-dependent VSMC activation was reversible by treatment with MFAP4-blocking antibodies and inhibitors of focal adhesion kinase and downstream kinases. In addition, we showed that MFAP4 promotes monocyte chemotaxis in integrin αVß3-dependent manner. CONCLUSIONS: MFAP4 regulates integrin αVß3-induced VSMC proliferation and migration, as well as monocyte chemotaxis, and accelerates neointimal hyperplasia after vascular injury.
Subject(s)
Carotid Artery Diseases/metabolism , Carrier Proteins/metabolism , Cell Movement , Cell Proliferation , Extracellular Matrix Proteins/metabolism , Glycoproteins/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima , Animals , Apoptosis , Carotid Arteries/metabolism , Carotid Arteries/pathology , Carotid Artery Diseases/genetics , Carotid Artery Diseases/pathology , Carrier Proteins/genetics , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Chemotaxis, Leukocyte , Disease Models, Animal , Extracellular Matrix Proteins/deficiency , Extracellular Matrix Proteins/genetics , Focal Adhesion Kinase 1/antagonists & inhibitors , Focal Adhesion Kinase 1/metabolism , Genotype , Glycoproteins/deficiency , Glycoproteins/genetics , Humans , Hyperplasia , Integrin alphaVbeta3/metabolism , Ligands , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Phenotype , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Time Factors , Vascular RemodelingABSTRACT
Renal autoregulation protects glomerular capillaries against increases in renal perfusion pressure (RPP). In the mesentery, both L- and T-type calcium channels are involved in autoregulation. L-type calcium channels participate in renal autoregulation, but the role of T-type channels is not fully elucidated due to lack of selective pharmacological inhibitors. The role of T- and L-type calcium channels in the response to acute increases in RPP in T-type channel knockout mice (CaV3.1) and normo- and hypertensive rats was examined. Changes in afferent arteriolar diameter in the kidneys from wild-type and CaV3.1 knockout mice were assessed. Autoregulation of renal blood flow was examined during acute increases in RPP in normo- and hypertensive rats under pharmacological blockade of T- and L-type calcium channels using mibefradil (0.1 µM) and nifedipine (1 µM). In contrast to the results from previous pharmacological studies, genetic deletion of T-type channels CaV3.1 did not affect renal autoregulation. Pharmacological blockade of T-type channels using concentrations of mibefradil which specifically blocks T-type channels also had no effect in wild-type or knockout mice. Blockade of L-type channels significantly attenuated renal autoregulation in both strains. These findings are supported by in vivo studies where blockade of T-type channels had no effect on changes in the renal vascular resistance after acute increases in RPP in normo- and hypertensive rats. These findings show that genetic deletion of T-type channels CaV3.1 or treatment with low concentrations of mibefradil does not affect renal autoregulation. Thus, T-type calcium channels are not involved in renal autoregulation in response to acute increases in RPP.
Subject(s)
Calcium Channels, T-Type/metabolism , Homeostasis , Kidney/metabolism , Animals , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/genetics , Gene Deletion , Kidney/blood supply , Kidney/physiology , Mibefradil/pharmacology , Mice , Mice, Inbred C57BL , Renal CirculationABSTRACT
Besides the well-known renal effects of aldosterone, the hormone is now known to have direct vascular effects. Clinical observations underline substantial adverse effects of aldosterone on cardiovascular function. The source of systemic circulating aldosterone is the adrenal gland zona glomerulosa cells through stimulus-secretion coupling involving depolarization, opening of L- and T-type calcium channels and aldosterone synthase activation. Local formation and release in peripheral tissues such as perivascular fat is recognized. Where does aldosterone affect the vasculature? Mineralocorticoid receptors (MRs) are present in endothelial and vascular smooth muscle cells, and MR-independent pathways are also involved. The vascular effects of aldosterone are complex, both concentration and temporal and spatial aspects are relevant. The acute response includes vasodilation through endothelial nitric oxide formation and vasoconstrictor effects through endothelial-contracting cyclooxygenase-derived factors and a changed calcium handling. The response to aldosterone can change within the same blood vessels depending on the exposure time and status of the endothelium. Chronic responses involve changed levels of reactive oxygen radicals, endothelial Na-influx and smooth muscle calcium channel expression. Furthermore, perivascular cells for example mast cells have also been suggested to participate in the chronic response. Moreover, the vascular effect of aldosterone depends on the status of the endothelium which is likely the cause of the very different responses to aldosterone and MR treatment observed in human studies going from increased to decreased flow depending on whether the patient had prior cardiovascular disease with endothelial dysfunction or not. A preponderance of constrictor versus dilator responses to aldosterone could therefore be involved in the detrimental vascular actions of the hormone in the setting of endothelial dysfunction and contribute to explain the beneficial action of MR blockers on blood pressure and target organ injury.
Subject(s)
Aldosterone/metabolism , Endothelium, Vascular/metabolism , Muscle, Smooth, Vascular/metabolism , Signal Transduction , Vasoconstriction , Vasodilation , Animals , Calcium Signaling , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Endothelium, Vascular/physiopathology , Humans , Mice, Transgenic , Mineralocorticoid Receptor Antagonists/therapeutic use , Muscle, Smooth, Vascular/physiopathology , Nitric Oxide/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Receptors, Mineralocorticoid/genetics , Receptors, Mineralocorticoid/metabolism , Signal Transduction/drug effects , Time Factors , Vasoconstriction/drug effects , Vasodilation/drug effectsABSTRACT
Over the years, it has been discussed whether T-type calcium channels Cav3 play a role in the cardiovascular and renal system. T-type channels have been reported to play an important role in renal hemodynamics, contractility of resistance vessels, and pacemaker activity in the heart. However, the lack of highly specific blockers cast doubt on the conclusions. As new T-type channel antagonists are being designed, the roles of T-type channels in cardiovascular and renal pathology need to be elucidated before T-type blockers can be clinically useful. Two types of T-type channels, Cav3.1 and Cav3.2, are expressed in blood vessels, the kidney, and the heart. Studies with gene-deficient mice have provided a way to investigate the Cav3.1 and Cav3.2 channels and their role in the cardiovascular system. This review discusses the results from these knockout mice. Evaluation of the literature leads to the conclusion that Cav3.1 and Cav3.2 channels have important, but different, functions in mice. T-type Cav3.1 channels affect heart rate, whereas Cav3.2 channels are involved in cardiac hypertrophy. In the vascular system, Cav3.2 activation leads to dilation of blood vessels, whereas Cav3.1 channels are mainly suggested to affect constriction. The Cav3.1 channel is also involved in neointima formation following vascular damage. In the kidney, Cav3.1 regulates plasma flow and Cav3.2 plays a role setting glomerular filtration rate. In conclusion, Cav3.1 and Cav3.2 are new therapeutic targets in several cardiovascular pathologies, but the use of T-type blockers should be specifically directed to the disease and to the channel subtype.
Subject(s)
Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/metabolism , Calcium Signaling , Calcium/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular System/metabolism , Kidney/metabolism , Animals , Calcium Channel Blockers/therapeutic use , Calcium Channels, T-Type/drug effects , Calcium Signaling/drug effects , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , Cardiovascular Diseases/physiopathology , Cardiovascular System/drug effects , Cardiovascular System/physiopathology , Genotype , Hemodynamics , Humans , Kidney/drug effects , Kidney/physiopathology , Mice, Knockout , Phenotype , Sympathetic Nervous System/physiopathologyABSTRACT
BACKGROUND: Diabetic nephropathy (DN) is associated with hypertension, expanded extracellular volume and impaired renal Na(+) excretion. It was hypothesized that aberrant glomerular filtration of serine proteases in DN causes proteolytic activation of the epithelial sodium channel (ENaC) in the kidney by excision of an inhibitory peptide tract from the γ subunit. METHODS: In a cross-sectional design, urine, plasma and clinical data were collected from type 1 diabetic patients with DN (n = 19) and matched normoalbuminuric type 1 diabetics (controls, n = 20). Urine was examined for proteases by western immunoblotting, patch clamp and ELISA. Urine exosomes were isolated to elucidate potential cleavage of γENaC by a monoclonal antibody directed against the 'inhibitory' peptide tract. RESULTS: Compared with control, DN patients displayed significantly higher blood pressure and urinary excretion of plasmin(ogen), prostasin and urokinase that correlated directly with urine albumin. Western blotting confirmed plasmin, prostasin and urokinase in urine from the DN group predominantly. Urine from DN evoked a significantly larger amiloride-sensitive inward current in single collecting duct cells compared with controls. Immunoblotting of urine exosomes showed aquaporin 2 in all patient samples. Exosomes displayed a virtual absence of intact γENaC while moieties compatible with cleavage by furin only, were shown in both groups. Proteolytic cleavage by the extracellular serine proteases plasmin or prostasin was observed in DN samples predominantly. CONCLUSION: DN is associated with increased urinary excretion of plasmin, prostasin and urokinase and proteolytic activation of ENaC that might contribute to impaired renal Na(+) excretion and hypertension.
Subject(s)
Amiloride/chemistry , Diabetic Nephropathies/urine , Fibrinolysin/urine , Kidney Tubules, Collecting/metabolism , Serine Endopeptidases/urine , Urokinase-Type Plasminogen Activator/urine , Aged , Cross-Sectional Studies , Diabetes Mellitus, Type 1/urine , Enzyme-Linked Immunosorbent Assay , Epithelial Sodium Channels/metabolism , Female , Humans , Hypertension/physiopathology , Kidney/physiopathology , Male , Middle Aged , Sodium/urineABSTRACT
Voltage-gated calcium channels are important for the depolarization-evoked contraction of vascular smooth muscle cells (SMCs), with L-type channels being the classical channel involved in this mechanism. However, it has been demonstrated that the CaV2.1 subunit, which encodes a neuronal isoform of the voltage-gated calcium channels (P/Q-type), is also expressed and contributes functionally to contraction of renal blood vessels in both mice and humans. Furthermore, preglomerular vascular SMCs and aortic SMCs coexpress L-, P-, and Q-type calcium channels within the same cell. Calcium channel blockers are widely used as pharmacological treatments. However, calcium channel antagonists vary in their selectivity for the various calcium channel subtypes, and the functional contribution from P/Q-type channels as compared with L-type should be considered. Confirming the presence of P/Q-type voltage-gated calcium channels in other types of vascular SMCs could be important when investigating phenomena such as hypertension, migraine, and other diseases known to involve SMCs and voltage-gated calcium channels. The purpose of this review was to give a short overview of the possible roles of P/Q-type calcium channels within the vascular system with special focus on the renal vasculature.
Subject(s)
Calcium Channels, N-Type/metabolism , Calcium Signaling , Kidney/blood supply , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Vasoconstriction , Animals , Calcium Channel Blockers/pharmacology , Calcium Channels, N-Type/drug effects , Calcium Channels, N-Type/genetics , Calcium Signaling/drug effects , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Genetic Predisposition to Disease , Humans , Ion Channel Gating , Membrane Potentials , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiopathology , Mutation , Myocytes, Smooth Muscle/drug effects , Phenotype , Renal Artery/metabolism , Renal Artery/physiopathology , Vasoconstriction/drug effectsABSTRACT
Voltage-gated calcium channels are involved in the vascular excitation-contraction mechanism and regulation of arterial blood pressure. It was hypothesized that T-type channels promote formation of nitric oxide from the endothelium. The present experiments determine the involvement of T-type channels in depolarization-dependent dilatation of mesenteric arteries and blood pressure regulation in Cav3.1 knock-out mice. Nitric oxide-dependent vasodilatation following depolarization-mediated vasoconstriction was reduced significantly in mesenteric arteries from Cav3.1(-/-) compared to wild type mice. Four days of systemic infusion of a nitric oxide (NO)-synthase-inhibitor to conscious wild type elicited a significant increase in mean arterial blood pressure that was absent in Cav3.1(-/-) mice. Immunoprecipitation and immunofluorescence labeling showed co-localization of Cav3.1 and endothelial nitric oxide synthase (eNOS) in arteries from wild type mice. Nitric oxide release measured as DAF fluorescence and cGMP levels were significantly lower in depolarized Cav3.1(-/-) compared to wild type arteries. In summary, the absence of T-type Cav3.1 channels attenuates NO-dependent dilatation in mesenteric arteries in vitro, as well as the hypertension after L-NAME infusion in vivo. Furthermore, Cav3.1 channels cluster with eNOS and promote formation of nitric oxide by the endothelium. The present findings suggest that this mechanism is important for the systemic impact of NO on peripheral resistance.
Subject(s)
Blood Pressure , Calcium Channels, T-Type/metabolism , Mesenteric Arteries/metabolism , Nitric Oxide/metabolism , Vasodilation , Animals , Calcium Channels, T-Type/genetics , Female , Male , Mesenteric Arteries/physiology , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type III/metabolismABSTRACT
Both the processing and release of secretory granules involve water movement across granule membranes. It was hypothesized that the water channel aquaporin (AQP)1 directly contributes to the recruitment of renin-positive cells in the afferent arteriole. AQP1(-/-) and AQP1(+/+) mice were fed a low-salt (LS) diet [0.004% (wt/wt) NaCl] for 7 days and given enalapril [angiotensin-converting enzyme inhibitor (ACEI), 0.1 mg/ml] in drinking water for 3 days. There were no differences in plasma renin concentration at baseline. After LS-ACEI, plasma renin concentrations increased markedly in both genotypes but was significantly lower in AQP1(-/-) mice compared with AQP1(+/+) mice. Tissue renin concentrations were higher in AQP1(-/-) mice, and renin mRNA levels were not different between genotypes. Mean arterial blood pressure was not different at baseline and during LS diet but decreased significantly in both genotypes after the addition of ACEI; the response was faster in AQP1(-/-) mice but then stabilized at a similar level. Renin release after 200 µl blood withdrawal was not different. Isoprenaline-stimulated renin release from isolated perfused kidneys did not differ between genotypes. Cortical tissue norepinephrine concentrations were lower after LS-ACEI compared with baseline with no difference between genotypes. Plasma nitrite/nitrate concentrations were unaffected by genotype and LS-ACEI. In AQP1(-/-) mice, the number of afferent arterioles with recruitment was significantly lower compared with AQP1(+/+) mice after LS-ACEI. We conclude that AQP1 is not necessary for acutely stimulated renin secretion in vivo and from isolated perfused kidneys, whereas recruitment of renin-positive cells in response to chronic stimulation is attenuated or delayed in AQP1(-/-) mice.
Subject(s)
Aquaporin 1/metabolism , Kidney/metabolism , Renin/biosynthesis , Renin/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Aquaporin 1/genetics , Blood Pressure/genetics , Blood Pressure/physiology , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/metabolism , Diet, Sodium-Restricted , Female , In Vitro Techniques , Kidney/cytology , Kidney/drug effects , Male , Mice , Mice, Knockout , Nitrates/metabolism , Norepinephrine/metabolism , Pregnancy , Renal Circulation/drug effectsABSTRACT
Voltage-gated Ca(2+) (Cav) channels play an essential role in the regulation of renal blood flow and glomerular filtration rate (GFR). Because T-type Cav channels are differentially expressed in pre- and postglomerular vessels, it was hypothesized that they impact renal blood flow and GFR differentially. The question was addressed with the use of two T-type Cav knockout (Cav3.1(-/-) and Cav3.2(-/-)) mouse strains. Continuous recordings of blood pressure and heart rate, para-aminohippurate clearance (renal plasma flow), and inulin clearance (GFR) were performed in conscious, chronically catheterized, wild-type (WT) and Cav3.1(-/-) and Cav3.2(-/-) mice. The contractility of afferent and efferent arterioles was determined in isolated perfused blood vessels. Efferent arterioles from Cav3.2(-/-) mice constricted significantly more in response to a depolarization compared with WT mice. GFR was increased in Cav3.2(-/-) mice with no significant changes in renal plasma flow, heart rate, and blood pressure. Cav3.1(-/-) mice had a higher renal plasma flow compared with WT mice, whereas GFR was indistinguishable from WT mice. No difference in the concentration response to K(+) was observed in isolated afferent and efferent arterioles from Cav3.1(-/-) mice compared with WT mice. Heart rate was significantly lower in Cav3.1(-/-) mice compared with WT mice with no difference in blood pressure. T-type antagonists significantly inhibited the constriction of human intrarenal arteries in response to a small depolarization. In conclusion, Cav3.2 channels support dilatation of efferent arterioles and affect GFR, whereas Cav3.1 channels in vivo contribute to renal vascular resistance. It is suggested that endothelial and nerve localization of Cav3.2 and Cav3.1, respectively, may account for the observed effects.