Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biochem J ; 442(3): 483-94, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22132769

ABSTRACT

Hepsin is a type II transmembrane serine protease that is expressed in several human tissues. Overexpression of hepsin has been found to correlate with tumour progression and metastasis, which is so far best studied for prostate cancer, where more than 90% of such tumours show this characteristic. To enable improved future patient treatment, we have developed a monoclonal humanized antibody that selectively inhibits human hepsin and does not inhibit other related proteases. We found that our antibody, hH35, potently inhibits hepsin enzymatic activity at nanomolar concentrations. Kinetic characterization revealed non-linear, slow, tight-binding inhibition. This correlates with the crystal structure we obtained for the human hepsin-hH35 antibody Fab fragment complex, which showed that the antibody binds hepsin around α3-helix, located far from the active centre. The unique allosteric mode of inhibition of hH35 is distinct from the recently described HGFA (hepatocyte growth factor activator) allosteric antibody inhibition. We further explain how a small change in the antibody design induces dramatic structural rearrangements in the hepsin antigen upon binding, leading to complete enzyme inactivation.


Subject(s)
Antibodies, Monoclonal/pharmacology , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/pharmacology , Allosteric Regulation , Animals , Antibodies, Monoclonal/chemistry , Crystallography, X-Ray , Humans , Mice , Mice, Inbred BALB C , Models, Molecular , Protein Conformation , Serine Proteinase Inhibitors/chemistry , Transfection
2.
MAbs ; 10(2): 290-303, 2018.
Article in English | MEDLINE | ID: mdl-29173063

ABSTRACT

Novel biotherapeutic glycoproteins, like recombinant monoclonal antibodies (mAbs) are widely used for the treatment of numerous diseases. The N-glycans attached to the constant region of an antibody have been demonstrated to be crucial for the biological efficacy. Even minor modifications of the N-glycan structure can dictate the potency of IgG effector functions such as the antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Here, we present the development of a glycoengineered CHO-K1 host cell line (HCL), stably expressing ß1,4-N-Acetylglucoseaminyltransferase III (GnT-III) and α-mannosidase II (Man-II), for the expression of a-fucosylated antibodies with enhanced Fc-mediated effector function. Glycoengineered HCLs were generated in a two-step strategy, starting with generating parental HCLs by stable transfection of CHO-K1 cells with GnT-III and Man-II. In a second step, parental HCLs were stably transfected a second time with these two transgenes to increase their copy number in the genetic background. Generated glycoengineered CHO-K1 cell lines expressing two different mAbs deliver antibody products with a content of more than 60% a-fucosylated glycans. In-depth analysis of the N-glycan structure revealed that the majority of the Fc-attached glycans of the obtained mAbs were of complex bisected type. Furthermore, we showed the efficient use of FcγRIIIa affinity chromatography as a novel method for the fast assessment of the mAbs a-fucosylation level. By testing different cultivation conditions for the pre-glycoengineered recombinant CHO-K1 clones, we identified key components essential for the production of a-fucosylated mAbs. The prevalent effect could be attributed to the trace element manganese, which leads to a strong increase of a-fucosylated complex- and hybrid-type glycans. In conclusion, the novel pre-glycoengineered CHO-K1 HCL can be used for the production of antibodies with high ratios of a-fucosylated Fc-attached N-glycans. Application of our newly developed FcγRIIIa affinity chromatography method during cell line development and use of optimized cultivation conditions can ultimately support the efficient development of a-fucosylated mAbs.


Subject(s)
Antibodies, Monoclonal/immunology , CHO Cells , Genetic Engineering/methods , Animals , Antibody-Dependent Cell Cytotoxicity , Cricetulus , Humans , N-Acetylglucosaminyltransferases/immunology , Protein Engineering/methods , Rats , Receptors, IgG/immunology , Transfection , alpha-Mannosidase/immunology
3.
J Mol Biol ; 322(5): 917-27, 2002 Oct 04.
Article in English | MEDLINE | ID: mdl-12367518

ABSTRACT

The human tumor suppressor protein p53 is understood only to some extent on a structural level. We performed a comprehensive biochemical and biophysical structure-function analysis of p53 full-length protein and p53 fragments. The analysis showed that p53 and the fragments investigated form stable functional units. Full-length p53 and the tetrameric fragment N93p53 (residues 93-393) are, however, destabilized significantly compared to the monomeric core domain (residues 94-312) and the monomeric fragment p53C312 (residues 1-312). At the physiological temperature of 37 degrees C and in the absence of modifications or stabilizing partners, wild-type p53 is more than 50% unfolded correlating with a 75% loss in DNA-binding activity. Furthermore the analysis of CD spectra revealed that full-length p53 contains large unstructured regions in its N and C-terminal parts. Our results indicate that full-length p53 is a modular protein consisting of defined structured and unstructured regions. We propose that p53 belongs to the growing family of loosely folded or partially unstructured native proteins. The lack of a rigid structure combined with the low overall stability may allow the physiological interaction of p53 with a multitude of partner proteins and the regulation of its turnover.


Subject(s)
Peptide Fragments/chemistry , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism , Calorimetry , Circular Dichroism , Humans , Peptide Fragments/metabolism , Protein Binding , Protein Structure, Secondary , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship , Temperature , Tumor Suppressor Protein p53/genetics
4.
Biophys Chem ; 96(2-3): 243-57, 2002 May 02.
Article in English | MEDLINE | ID: mdl-12034444

ABSTRACT

The human tumor suppressor p53 is a conformationally flexible and functionally complex protein that is only partially understood on a structural level. We expressed full-length p53 in the cytosol of Escherichia coli as inclusion bodies. To obtain active, recombinant p53, we varied renaturation conditions using DNA binding activity and oligomeric state as criteria for successful refolding. The optimized renaturation protocol allows the refolding of active, DNA binding p53 with correct quaternary structure and domain contact interfaces. The purified protein could be allosterically activated for DNA binding by addition of a C-terminally binding antibody. Analytical gelfiltration and chemical cross-linking confirmed the tetrameric quaternary structure and the spectroscopic analysis of renatured p53 by fluorescence and circular dichroism, suggested that native p53 is partially unstructured.


Subject(s)
Protein Renaturation , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Proteins/chemistry , Circular Dichroism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/isolation & purification , DNA-Binding Proteins/metabolism , Electrophoretic Mobility Shift Assay , Escherichia coli/genetics , Humans , Inclusion Bodies , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Structure-Activity Relationship , Tumor Suppressor Protein p53/isolation & purification , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/isolation & purification , Tumor Suppressor Proteins/metabolism
6.
Biol Chem ; 385(1): 95-102, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14977051

ABSTRACT

The transcription factor p53 acts as major tumor suppressor and is inactivated by mutation in more than 50% of all human tumors. We have established an efficient procedure for the in vitro folding and purification of the p53 DNA binding domain (p53DBD) using a modified factorial matrix approach that supplies large amounts of homogeneous (isotope-labeled) p53DBD for application in biochemical, crystallographic and NMR spectroscopic studies. We further show with biophysical methods that in vitro folded p53DBD is fully functional and that its conformation is identical to that obtained from the soluble fraction.


Subject(s)
Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism , Animals , DNA/chemistry , DNA/metabolism , Humans , Nucleic Acid Conformation
SELECTION OF CITATIONS
SEARCH DETAIL