Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Mol Ecol ; 30(6): 1457-1476, 2021 03.
Article in English | MEDLINE | ID: mdl-33544423

ABSTRACT

Harbor porpoise in the North Pacific are found in coastal waters from southern California to Japan, but population structure is poorly known outside of a few local areas. We used multiplexed amplicon sequencing of 292 loci and genotyped clusters of single nucleotide polymoirphisms as microhaplotypes (N = 271 samples) in addition to mitochondrial (mtDNA) sequence data (N = 413 samples) to examine the genetic structure from samples collected along the Pacific coast and inland waterways from California to southern British Columbia. We confirmed an overall pattern of strong isolation-by-distance, suggesting that individual dispersal is restricted. We also found evidence of regions where genetic differences are larger than expected based on geographical distance alone, implying current or historical barriers to gene flow. In particular, the southernmost population in California is genetically distinct (FST  = 0.02 [microhaplotypes]; 0.31 [mtDNA]), with both reduced genetic variability and high frequency of an otherwise rare mtDNA haplotype. At the northern end of our study range, we found significant genetic differentiation of samples from the Strait of Georgia, previously identified as a potential biogeographical boundary or secondary contact zone between harbor porpoise populations. Association of microhaplotypes with remotely sensed environmental variables indicated potential local adaptation, especially at the southern end of the species' range. These results inform conservation and management for this nearshore species, illustrate the value of genomic methods for detecting patterns of genetic structure within a continuously distributed marine species, and highlight the power of microhaplotype genotyping for detecting genetic structure in harbor porpoises despite reliance on poor-quality samples.


Subject(s)
Phocoena , Animals , British Columbia , DNA, Mitochondrial/genetics , Gene Flow , Genetic Variation , Genetics, Population , Georgia , Japan , Phocoena/genetics
2.
Mol Ecol ; 30(23): 6162-6177, 2021 12.
Article in English | MEDLINE | ID: mdl-34416064

ABSTRACT

Runs of homozygosity (ROH) occur when offspring inherit haplotypes that are identical by descent from each parent. Length distributions of ROH are informative about population history; specifically, the probability of inbreeding mediated by mating system and/or population demography. Here, we investigated whether variation in killer whale (Orcinus orca) demographic history is reflected in genome-wide heterozygosity and ROH length distributions, using a global data set of 26 genomes representative of geographic and ecotypic variation in this species, and two F1 admixed individuals with Pacific-Atlantic parentage. We first reconstructed demographic history for each population as changes in effective population size through time using the pairwise sequential Markovian coalescent (PSMC) method. We found a subset of populations declined in effective population size during the Late Pleistocene, while others had more stable demography. Genomes inferred to have undergone ancestral declines in effective population size, were autozygous at hundreds of short ROH (<1 Mb), reflecting high background relatedness due to coalescence of haplotypes deep within the pedigree. In contrast, longer and therefore younger ROH (>1.5 Mb) were found in low latitude populations, and populations of known conservation concern. These include a Scottish killer whale, for which 37.8% of the autosomes were comprised of ROH >1.5 Mb in length. The fate of this population, in which only two adult males have been sighted in the past five years, and zero fecundity over the last two decades, may be inextricably linked to its demographic history and consequential inbreeding depression.


Subject(s)
Whale, Killer , Animals , Genome , Homozygote , Inbreeding , Male , Polymorphism, Single Nucleotide , Population Density , Whale, Killer/genetics
3.
Dis Aquat Organ ; 146: 129-143, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34672263

ABSTRACT

Cryptococcus gattii is a fungal pathogen that primarily affects the respiratory and nervous systems of humans and other animals. C. gattii emerged in temperate North America in 1999 as a multispecies outbreak of cryptococcosis in British Columbia (Canada) and Washington State and Oregon (USA), affecting humans, domestic animals, and wildlife. Here we describe the C. gattii epizootic in odontocetes. Cases of C. gattii were identified in 42 odontocetes in Washington and British Columbia between 1997 and 2016. Species affected included harbor porpoises Phocoena phocoena (n = 26), Dall's porpoises Phocoenoides dalli (n = 14), and Pacific white-sided dolphins Lagenorhynchus obliquidens (n = 2). The probable index case was identified in an adult male Dall's porpoise in 1997, 2 yr prior to the initial terrestrial outbreak. The spatiotemporal extent of the C. gattii epizootic was defined, and cases in odontocetes were found to be clustered around terrestrial C. gattii hotspots. Case-control analyses with stranded, uninfected odontocetes revealed that risk factors for infection were species (Dall's porpoises), age class (adult animals), and season (winter). This study suggests that mycoses are an emerging source of mortality for odontocetes, and that outbreaks may be associated with anthropogenic environmental disturbance.


Subject(s)
Cryptococcus gattii , Dolphins , Phocoena , Animals , British Columbia , Disease Outbreaks/veterinary , Male
4.
Mol Ecol ; 28(14): 3427-3444, 2019 07.
Article in English | MEDLINE | ID: mdl-31131963

ABSTRACT

Reconstruction of the demographic and evolutionary history of populations assuming a consensus tree-like relationship can mask more complex scenarios, which are prevalent in nature. An emerging genomic toolset, which has been most comprehensively harnessed in the reconstruction of human evolutionary history, enables molecular ecologists to elucidate complex population histories. Killer whales have limited extrinsic barriers to dispersal and have radiated globally, and are therefore a good candidate model for the application of such tools. Here, we analyse a global data set of killer whale genomes in a rare attempt to elucidate global population structure in a nonhuman species. We identify a pattern of genetic homogenisation at lower latitudes and the greatest differentiation at high latitudes, even between currently sympatric lineages. The processes underlying the major axis of structure include high drift at the edge of species' range, likely associated with founder effects and allelic surfing during postglacial range expansion. Divergence between Antarctic and non-Antarctic lineages is further driven by ancestry segments with up to four-fold older coalescence time than the genome-wide average; relicts of a previous vicariance during an earlier glacial cycle. Our study further underpins that episodic gene flow is ubiquitous in natural populations, and can occur across great distances and after substantial periods of isolation between populations. Thus, understanding the evolutionary history of a species requires comprehensive geographic sampling and genome-wide data to sample the variation in ancestry within individuals.


Subject(s)
Gene Flow , Genome , Whale, Killer/genetics , Alleles , Animals , Antarctic Regions , Base Sequence , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genetic Drift , Genetic Variation , Geography , Markov Chains , Models, Genetic , Phylogeny , Principal Component Analysis
5.
J Exp Biol ; 222(Pt 3)2019 02 04.
Article in English | MEDLINE | ID: mdl-30718292

ABSTRACT

Studies of odontocete foraging ecology have been limited by the challenges of observing prey capture events and outcomes underwater. We sought to determine whether subsurface movement behavior recorded from archival tags could accurately identify foraging events by fish-eating killer whales. We used multisensor bio-logging tags attached by suction cups to Southern Resident killer whales (Orcinus orca) to: (1) identify a stereotyped movement signature that co-occurred with visually confirmed prey capture dives; (2) construct a prey capture dive detector and validate it against acoustically confirmed prey capture dives; and (3) demonstrate the utility of the detector by testing hypotheses about foraging ecology. Predation events were significantly predicted by peaks in the rate of change of acceleration ('jerk peak'), roll angle and heading variance. Detection of prey capture dives by movement signatures enabled substantially more dives to be included in subsequent analyses compared with previous surface or acoustic detection methods. Males made significantly more prey capture dives than females and more dives to the depth of their preferred prey, Chinook salmon. Additionally, only half of the tag deployments on females (5 out of 10) included a prey capture dive, whereas all tag deployments on males exhibited at least one prey capture dive (12 out of 12). This dual approach of kinematic detection of prey capture coupled with hypothesis testing can be applied across odontocetes and other marine predators to investigate the impacts of social, environmental and anthropogenic factors on foraging ecology.


Subject(s)
Ethology/methods , Predatory Behavior , Whale, Killer/physiology , Animals , Biomechanical Phenomena , Ethology/instrumentation , Female , Male , Sex Factors , Washington
6.
J Acoust Soc Am ; 146(5): 3475, 2019 11.
Article in English | MEDLINE | ID: mdl-31795684

ABSTRACT

Foraging behavior in odontocetes is fundamentally tied to the use of sound. Resident-type killer whales use echolocation to locate and capture elusive salmonid prey. In this investigation, acoustic recording tags were suction cup-attached to endangered Southern Resident killer whales to describe their acoustic behavior during different phases of foraging that, along with detections of prey handling sounds (e.g., crunches) and observed predation events, allow confirmation of prey capture. Echolocation click trains were categorized based on the inter-click interval (ICI) according to hypothesized foraging function. Whales produced slow click trains (ICI >100 ms) at shallowest depths but over the largest change of depth, fast click trains (10 ms < ICI ≤100 ms) at intermediate depths, and buzz trains (ICI ≤10 ms) at deepest depths over the smallest depth change. These results align with hypotheses regarding biosonar use to search, pursue and capture prey. Males exhibited a higher probability of producing slow click trains, buzzes and prey handling sounds, indicating higher levels of prey searching and capture to support the energy requirement of their larger body size. These findings identify relevant acoustic indicators of subsurface foraging behaviors of killer whales, enabling investigations of human impacts on sound use and foraging.

7.
Environ Sci Technol ; 50(12): 6506-16, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27186642

ABSTRACT

Persistent organic pollutants (POPs), specifically PCBs, PBDEs, and DDTs, in the marine environment are well documented, however accumulation and mobilization patterns at the top of the food-web are poorly understood. This study broadens the understanding of POPs in the endangered Southern Resident killer whale population by addressing modulation by prey availability and reproductive status, along with endocrine disrupting effects. A total of 140 killer whale scat samples collected from 54 unique whales across a 4 year sampling period (2010-2013) were analyzed for concentrations of POPs. Toxicant measures were linked to pod, age, and birth order in genotyped individuals, prey abundance using open-source test fishery data, and pregnancy status based on hormone indices from the same sample. Toxicant concentrations were highest and had the greatest potential for toxicity when prey abundance was the lowest. In addition, these toxicants were likely from endogenous lipid stores. Bioaccumulation of POPs increased with age, with the exception of presumed nulliparous females. The exceptional pattern may be explained by females experiencing unobserved neonatal loss. Transfer of POPs through mobilization of endogenous lipid stores during lactation was highest for first-borns with diminished transfer to subsequent calves. Contrary to expectation, POP concentrations did not demonstrate an associated disruption of thyroid hormone, although this association may have been masked by impacts of prey abundance on thyroid hormone concentrations. The noninvasive method for measuring POP concentrations in killer whales through scat employed in this study may improve toxicant monitoring in the marine environment and promote conservation efforts.


Subject(s)
Environmental Monitoring , Whale, Killer , Animals , Halogenated Diphenyl Ethers , Polychlorinated Biphenyls , Reproduction
8.
Arch Environ Contam Toxicol ; 70(1): 9-19, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26298464

ABSTRACT

Biologic sample collection in wild cetacean populations is challenging. Most information on toxicant levels is obtained from blubber biopsy samples; however, sample collection is invasive and strictly regulated under permit, thus limiting sample numbers. Methods are needed to monitor toxicant levels that increase temporal and repeat sampling of individuals for population health and recovery models. The objective of this study was to optimize measuring trace levels (parts per billion) of persistent organic pollutants (POPs), namely polychlorinated-biphenyls (PCBs), polybrominated-diphenyl-ethers (PBDEs), dichlorodiphenyltrichloroethanes (DDTs), and hexachlorocyclobenzene, in killer whale scat (fecal) samples. Archival scat samples, initially collected, lyophilized, and extracted with 70 % ethanol for hormone analyses, were used to analyze POP concentrations. The residual pellet was extracted and analyzed using gas chromatography coupled with mass spectrometry. Method detection limits ranged from 11 to 125 ng/g dry weight. The described method is suitable for p,p'-DDE, PCBs-138, 153, 180, and 187, and PBDEs-47 and 100; other POPs were below the limit of detection. We applied this method to 126 scat samples collected from Southern Resident killer whales. Scat samples from 22 adult whales also had known POP concentrations in blubber and demonstrated significant correlations (p < 0.01) between matrices across target analytes. Overall, the scat toxicant measures matched previously reported patterns from blubber samples of decreased levels in reproductive-age females and a decreased p,p'-DDE/∑PCB ratio in J-pod. Measuring toxicants in scat samples provides an unprecedented opportunity to noninvasively evaluate contaminant levels in wild cetacean populations; these data have the prospect to provide meaningful information for vital management decisions.


Subject(s)
Environmental Monitoring , Feces/chemistry , Water Pollutants, Chemical/analysis , Whale, Killer , Animals , Dichlorodiphenyl Dichloroethylene/analysis , Female , Gas Chromatography-Mass Spectrometry , Halogenated Diphenyl Ethers/analysis , Male , Polychlorinated Biphenyls/analysis
9.
J Acoust Soc Am ; 134(5): 3486-95, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24180759

ABSTRACT

Using moored autonomous acoustic recorders to detect and record the vocalizations of social odonotocetes to determine their occurrence patterns is a non-invasive tool in the study of these species in remote locations. Acoustic recorders were deployed in seven locations on the continental shelf of the U.S. west coast from Cape Flattery, WA to Pt. Reyes, CA to detect and record endangered southern resident killer whales between January and June of 2006-2011. Detection rates of these whales were greater in 2009 and 2011 than in 2006-2008, were most common in the month of March, and occurred with the greatest frequency off the Columbia River and Westport, which was likely related to the presence of their most commonly consumed prey, Chinook salmon. The observed patterns of annual and monthly killer whale occurrence may be related to run strength and run timing, respectively, for spring Chinook returning to the Columbia River, the largest run in this region at this time of year. Acoustic recorders provided a unique, long-term, dataset that will be important to inform future consideration of Critical Habitat designation for this U.S. Endangered Species Act listed species.


Subject(s)
Acoustics , Endangered Species , Environmental Monitoring/methods , Oceanography/methods , Vocalization, Animal/classification , Whale, Killer/classification , Whale, Killer/physiology , Acoustics/instrumentation , Animals , Behavior, Animal , Environmental Monitoring/instrumentation , Equipment Design , Oceanography/instrumentation , Oceans and Seas , Population Density , Population Dynamics , Predatory Behavior , Signal Processing, Computer-Assisted , Sound Spectrography , Swimming , Time Factors , Transducers
10.
Behav Ecol ; 34(3): 373-386, 2023.
Article in English | MEDLINE | ID: mdl-37192928

ABSTRACT

In cooperative species, human-induced rapid environmental change may threaten cost-benefit tradeoffs of group behavioral strategies that evolved in past environments. Capacity for behavioral flexibility can increase population viability in novel environments. Whether the partitioning of individual responsibilities within social groups is fixed or flexible across populations is poorly understood, despite its relevance for predicting responses to global change at the population and species levels and designing successful conservation programs. We leveraged bio-logging data from two populations of fish-eating killer whales (Orcinus orca) to quantify patterns of fine-scale foraging movements and their relationships with demography. We reveal striking interpopulation differences in patterns of individual foraging behavior. Females from the endangered Southern Resident (SRKW) population captured less prey and spent less time pursuing prey than SRKW males or Northern Resident (NRKW) females, whereas NRKW females captured more prey than NRKW males. The presence of a calf (≤3 years) reduced the number of prey captured by adult females from both populations, but disproportionately so for SRKW. SRKW adult males with a living mother captured more prey than those whose mother had died, whereas the opposite was true for NRKW adult males. Across populations, males foraged in deeper areas than females, and SRKW captured prey deeper than NRKW. These population-level differences in patterns of individual foraging behavior challenge the existing paradigm that females are the disproportionate foragers in gregarious resident killer whales, and demonstrate considerable variation in the foraging strategies across populations of an apex marine predator experiencing different environmental stressors.

11.
Nat Ecol Evol ; 7(5): 675-686, 2023 05.
Article in English | MEDLINE | ID: mdl-36941343

ABSTRACT

Understanding the factors that cause endangered populations to either grow or decline is crucial for preserving biodiversity. Conservation efforts often address extrinsic threats, such as environmental degradation and overexploitation, that can limit the recovery of endangered populations. Genetic factors such as inbreeding depression can also affect population dynamics but these effects are rarely measured in the wild and thus often neglected in conservation efforts. Here we show that inbreeding depression strongly influences the population dynamics of an endangered killer whale population, despite genomic signatures of purging of deleterious alleles via natural selection. We find that the 'Southern Residents', which are currently endangered despite nearly 50 years of conservation efforts, exhibit strong inbreeding depression for survival. Our population models suggest that this inbreeding depression limits population growth and predict further decline if the population remains genetically isolated and typical environmental conditions continue. The Southern Residents also had more inferred homozygous deleterious alleles than three other, growing, populations, further suggesting that inbreeding depression affects population fitness. These results demonstrate that inbreeding depression can substantially limit the recovery of endangered populations. Conservation actions focused only on extrinsic threats may therefore fail to account for key intrinsic genetic factors that also limit population growth.


Subject(s)
Inbreeding Depression , Whale, Killer , Animals , Inbreeding , Whale, Killer/genetics , Population Dynamics , Selection, Genetic
12.
Mol Ecol Resour ; 23(6): 1241-1256, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36994812

ABSTRACT

Epigenetic approaches for estimating the age of living organisms are revolutionizing studies of long-lived species. Molecular biomarkers that allow age estimates from small tissue biopsies promise to enhance studies of long-lived whales, addressing a fundamental and challenging parameter in wildlife management. DNA methylation (DNAm) can affect gene expression, and strong correlations between DNAm patterns and age have been documented in humans and nonhuman vertebrates and used to construct "epigenetic clocks". We present several epigenetic clocks for skin samples from two of the longest-lived cetaceans, killer whales and bowhead whales. Applying the mammalian methylation array to genomic DNA from skin samples we validate four different clocks with median errors of 2.3-3.7 years. These epigenetic clocks demonstrate the validity of using cytosine methylation data to estimate the age of long-lived cetaceans and have broad applications supporting the conservation and management of long-lived cetaceans using genomic DNA from remote tissue biopsies.


Subject(s)
Aging , DNA Methylation , Humans , Animals , Aging/genetics , Mammals , Biomarkers , DNA , Epigenesis, Genetic
13.
PLoS One ; 18(6): e0286551, 2023.
Article in English | MEDLINE | ID: mdl-37379317

ABSTRACT

Photographic identification catalogs of individual killer whales (Orcinus orca) over time provide a tool for remote health assessment. We retrospectively examined digital photographs of Southern Resident killer whales in the Salish Sea to characterize skin changes and to determine if they could be an indicator of individual, pod, or population health. Using photographs collected from 2004 through 2016 from 18,697 individual whale sightings, we identified six lesions (cephalopod, erosions, gray patches, gray targets, orange on gray, and pinpoint black discoloration). Of 141 whales that were alive at some point during the study, 99% had photographic evidence of skin lesions. Using a multivariate model including age, sex, pod, and matriline across time, the point prevalence of the two most prevalent lesions, gray patches and gray targets, varied between pods and between years and showed small differences between stage classes. Despite minor differences, we document a strong increase in point prevalence of both lesion types in all three pods from 2004 through 2016. The health significance of this is not clear, but the possible relationship between these lesions and decreasing body condition and immunocompetence in an endangered, non-recovering population is a concern. Understanding the etiology and pathogenesis of these lesions is important to better understand the health significance of these skin changes that are increasing in prevalence.


Subject(s)
Whale, Killer , Animals , Retrospective Studies
14.
Conserv Physiol ; 10(1): coac014, 2022.
Article in English | MEDLINE | ID: mdl-35492424

ABSTRACT

Opportunities to assess odontocete health are restricted due to their limited time at the surface, relatively quick movements and large geographic ranges. For endangered populations such as the southern resident killer whales (SKRWs) of the northeast Pacific Ocean, taking advantage of non-invasive samples such as expelled mucus and exhaled breath is appealing. Over the past 12 years, such samples were collected, providing a chance to analyse and assess their bacterial microbiomes using amplicon sequencing. Based on operational taxonomic units, microbiome communities from SRKW and transient killer whales showed little overlap between mucus, breath and seawater from SRKW habitats and six bacterial phyla were prominent in expelled mucus but not in seawater. Mollicutes and Fusobacteria were common and abundant in mucus, but not in breath or seawater, suggesting these bacterial classes may be normal constituents of the SRKW microbiome. Out of 134 bacterial families detected, 24 were unique to breath and mucus, including higher abundances of Burkholderiaceae, Moraxellaceae and Chitinophagaceae. Although there were multiple bacterial genera in breath or mucus that include pathogenic species (e.g. Campylobacter, Hemophilus, Treponema), the presence of these bacteria is not necessarily evidence of disease or infection. Future emphasis on genotyping mucus samples to the individual animal will allow further assessment in the context of that animal's history, including body condition index and prior contaminants burden. This study is the first to examine expelled mucus from cetaceans for microbiomes and demonstrates the value of analysing these types of non-invasive samples.

15.
J Hered ; 102(5): 537-53, 2011.
Article in English | MEDLINE | ID: mdl-21757487

ABSTRACT

We used data from 78 individuals at 26 microsatellite loci to infer parental and sibling relationships within a community of fish-eating ("resident") eastern North Pacific killer whales (Orcinus orca). Paternity analysis involving 15 mother/calf pairs and 8 potential fathers and whole-pedigree analysis of the entire sample produced consistent results. The variance in male reproductive success was greater than expected by chance and similar to that of other aquatic mammals. Although the number of confirmed paternities was small, reproductive success appeared to increase with male age and size. We found no evidence that males from outside this small population sired any of the sampled individuals. In contrast to previous results in a different population, many offspring were the result of matings within the same "pod" (long-term social group). Despite this pattern of breeding within social groups, we found no evidence of offspring produced by matings between close relatives, and the average internal relatedness of individuals was significantly less than expected if mating were random. The population's estimated effective size was <30 or about 1/3 of the current census size. Patterns of allele frequency variation were consistent with a population bottleneck.


Subject(s)
Reproduction/genetics , Whale, Killer/genetics , Animals , Female , Gene Flow , Genetic Loci , Genetic Variation , Genetics, Population , Genotype , Linkage Disequilibrium/genetics , Male , Microsatellite Repeats/genetics , Models, Genetic , Paternity , Pedigree , Population Density , Sexual Behavior, Animal
16.
Mar Environ Res ; 170: 105429, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34333339

ABSTRACT

Vessel traffic is prevalent throughout marine environments. However, we often have a limited understanding of vessel impacts on marine wildlife, particularly cetaceans, due to challenges of studying fully-aquatic species. To investigate vessel and acoustic effects on cetacean foraging behavior, we attached suction-cup sound and movement tags to endangered Southern Resident killer whales in their summer habitat while collecting geo-referenced proximate vessel data. We identified prey capture dives using whale kinematic signatures and found that the probability of capturing prey increased as salmon abundance increased, but decreased as vessel speed increased. When vessels emitted navigational sonar, whales made longer dives to capture prey and descended more slowly when they initiated these dives. Finally, whales descended more quickly when noise levels were higher and vessel approaches were closer. These findings advance a growing understanding of vessel and sound impacts on marine wildlife and inform efforts to manage vessel impacts on endangered populations.


Subject(s)
Whale, Killer , Acoustics , Animals , Salmon , Sound
17.
PLoS One ; 16(3): e0247031, 2021.
Article in English | MEDLINE | ID: mdl-33657188

ABSTRACT

Understanding diet is critical for conservation of endangered predators. Southern Resident killer whales (SRKW) (Orcinus orca) are an endangered population occurring primarily along the outer coast and inland waters of Washington and British Columbia. Insufficient prey has been identified as a factor limiting their recovery, so a clear understanding of their seasonal diet is a high conservation priority. Previous studies have shown that their summer diet in inland waters consists primarily of Chinook salmon (Oncorhynchus tshawytscha), despite that species' rarity compared to some other salmonids. During other times of the year, when occurrence patterns include other portions of their range, their diet remains largely unknown. To address this data gap, we collected feces and prey remains from October to May 2004-2017 in both the Salish Sea and outer coast waters. Using visual and genetic species identification for prey remains and genetic approaches for fecal samples, we characterized the diet of the SRKWs in fall, winter, and spring. Chinook salmon were identified as an important prey item year-round, averaging ~50% of their diet in the fall, increasing to 70-80% in the mid-winter/early spring, and increasing to nearly 100% in the spring. Other salmon species and non-salmonid fishes, also made substantial dietary contributions. The relatively high species diversity in winter suggested a possible lack of Chinook salmon, probably due to seasonally lower densities, based on SRKW's proclivity to selectively consume this species in other seasons. A wide diversity of Chinook salmon stocks were consumed, many of which are also at risk. Although outer coast Chinook samples included 14 stocks, four rivers systems accounted for over 90% of samples, predominantly the Columbia River. Increasing the abundance of Chinook salmon stocks that inhabit the whales' winter range may be an effective conservation strategy for this population.


Subject(s)
Animal Feed/analysis , Predatory Behavior/physiology , Salmon/genetics , Salmonidae/genetics , Sequence Analysis, DNA/veterinary , Whale, Killer/physiology , Animals , British Columbia , Conservation of Natural Resources , Endangered Species , Feces/chemistry , High-Throughput Nucleotide Sequencing , Rivers , Salmon/classification , Salmonidae/classification , Seasons , Washington
18.
PLoS One ; 15(12): e0242505, 2020.
Article in English | MEDLINE | ID: mdl-33264305

ABSTRACT

Understanding health and mortality in killer whales (Orcinus orca) is crucial for management and conservation actions. We reviewed pathology reports from 53 animals that stranded in the eastern Pacific Ocean and Hawaii between 2004 and 2013 and used data from 35 animals that stranded from 2001 to 2017 to assess association with morphometrics, blubber thickness, body condition and cause of death. Of the 53 cases, cause of death was determined for 22 (42%) and nine additional animals demonstrated findings of significant importance for population health. Causes of calf mortalities included infectious disease, nutritional, and congenital malformations. Mortalities in sub-adults were due to trauma, malnutrition, and infectious disease and in adults due to bacterial infections, emaciation and blunt force trauma. Death related to human interaction was found in every age class. Important incidental findings included concurrent sarcocystosis and toxoplasmosis, uterine leiomyoma, vertebral periosteal proliferations, cookiecutter shark (Isistius sp.) bite wounds, excessive tooth wear and an ingested fish hook. Blubber thickness increased significantly with body length (all p < 0.001). In contrast, there was no relationship between body length and an index of body condition (BCI). BCI was higher in animals that died from trauma. This study establishes a baseline for understanding health, nutritional status and causes of mortality in stranded killer whales. Given the evidence of direct human interactions on all age classes, in order to be most successful recovery efforts should address the threat of human interactions, especially for small endangered groups of killer whales that occur in close proximity to large human populations, interact with recreational and commercial fishers and transit established shipping lanes.


Subject(s)
Whale, Killer/physiology , Animals , Cause of Death , Hawaii , Pacific Ocean , Reproduction , Skin/pathology , Whale, Killer/anatomy & histology , Whale, Killer/parasitology
19.
Sci Rep ; 9(1): 14951, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31628371

ABSTRACT

Behavioral data can be important for effective management of endangered marine predators, but can be challenging to obtain. We utilized suction cup-attached biologging tags equipped with stereo hydrophones, triaxial accelerometers, triaxial magnetometers, pressure and temperature sensors, to characterize the subsurface behavior of an endangered population of killer whales (Orcinus orca). Tags recorded depth, acoustic and movement behavior on fish-eating killer whales in the Salish Sea between 2010-2014. We tested the hypotheses that (a) distinct behavioral states can be characterized by integrating movement and acoustic variables, (b) subsurface foraging occurs in bouts, with distinct periods of searching and capture temporally separated from travel, and (c) the probabilities of transitioning between behavioral states differ by sex. Using Hidden Markov modeling of two acoustic and four movement variables, we identified five temporally distinct behavioral states. Persistence in the same state on a subsequent dive had the greatest likelihood, with the exception of deep prey pursuit, indicating that behavior was clustered in time. Additionally, females spent more time at the surface than males, and engaged in less foraging behavior. These results reveal significant complexity and sex differences in subsurface foraging behavior, and underscore the importance of incorporating behavior into the design of conservation strategies.


Subject(s)
Behavior, Animal , Diving , Feeding Behavior , Sex Characteristics , Whale, Killer/physiology , Accelerometry , Acoustics , Animals , Biological Evolution , Female , Male , Markov Chains , Movement , Probability , Regression Analysis , Temperature
20.
Mar Pollut Bull ; 54(12): 1903-11, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17931664

ABSTRACT

"Southern Resident" killer whales include three "pods" (J, K and L) that reside primarily in Puget Sound/Georgia Basin during the spring, summer and fall. This population was listed as "endangered" in the US and Canada following a 20% decline between 1996 and 2001. The current study, using blubber/epidermis biopsy samples, contributes contemporary information about potential factors (i.e., levels of pollutants or changes in diet) that could adversely affect Southern Residents. Carbon and nitrogen stable isotopes indicated J- and L-pod consumed prey from similar trophic levels in 2004/2006 and also showed no evidence for a large shift in the trophic level of prey consumed by L-pod between 1996 and 2004/2006. Sigma PCBs decreased for Southern Residents biopsied in 2004/2006 compared to 1993-1995. Surprisingly, however, a three-year-old male whale (J39) had the highest concentrations of Sigma PBDEs, Sigma HCHs and HCB. POP ratio differences between J- and L-pod suggested that they occupy different ranges in winter.


Subject(s)
Adipose Tissue/chemistry , Environmental Exposure , Water Pollutants, Chemical/analysis , Whale, Killer/physiology , Animals , Biopsy, Needle/veterinary , Carbon Isotopes/analysis , DDT/analysis , Environmental Monitoring/methods , Female , Lipids/analysis , Male , Nitrogen Isotopes/analysis , Pacific Ocean , Polybrominated Biphenyls/analysis , Polychlorinated Biphenyls/analysis
SELECTION OF CITATIONS
SEARCH DETAIL