Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters

Publication year range
1.
Cell ; 177(2): 463-477.e15, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30951672

ABSTRACT

To develop a map of cell-cell communication mediated by extracellular RNA (exRNA), the NIH Extracellular RNA Communication Consortium created the exRNA Atlas resource (https://exrna-atlas.org). The Atlas version 4P1 hosts 5,309 exRNA-seq and exRNA qPCR profiles from 19 studies and a suite of analysis and visualization tools. To analyze variation between profiles, we apply computational deconvolution. The analysis leads to a model with six exRNA cargo types (CT1, CT2, CT3A, CT3B, CT3C, CT4), each detectable in multiple biofluids (serum, plasma, CSF, saliva, urine). Five of the cargo types associate with known vesicular and non-vesicular (lipoprotein and ribonucleoprotein) exRNA carriers. To validate utility of this model, we re-analyze an exercise response study by deconvolution to identify physiologically relevant response pathways that were not detected previously. To enable wide application of this model, as part of the exRNA Atlas resource, we provide tools for deconvolution and analysis of user-provided case-control studies.


Subject(s)
Cell Communication/physiology , RNA/metabolism , Adult , Body Fluids/chemistry , Cell-Free Nucleic Acids/metabolism , Circulating MicroRNA/metabolism , Extracellular Vesicles/metabolism , Female , Humans , Male , Reproducibility of Results , Sequence Analysis, RNA/methods , Software
3.
Nat Immunol ; 21(5): 513-524, 2020 05.
Article in English | MEDLINE | ID: mdl-32284594

ABSTRACT

Oxidative stress is a central part of innate immune-induced neurodegeneration. However, the transcriptomic landscape of central nervous system (CNS) innate immune cells contributing to oxidative stress is unknown, and therapies to target their neurotoxic functions are not widely available. Here, we provide the oxidative stress innate immune cell atlas in neuroinflammatory disease and report the discovery of new druggable pathways. Transcriptional profiling of oxidative stress-producing CNS innate immune cells identified a core oxidative stress gene signature coupled to coagulation and glutathione-pathway genes shared between a microglia cluster and infiltrating macrophages. Tox-seq followed by a microglia high-throughput screen and oxidative stress gene network analysis identified the glutathione-regulating compound acivicin, with potent therapeutic effects that decrease oxidative stress and axonal damage in chronic and relapsing multiple sclerosis models. Thus, oxidative stress transcriptomics identified neurotoxic CNS innate immune populations and may enable discovery of selective neuroprotective strategies.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/genetics , Gene Expression Profiling/methods , Microglia/physiology , Multiple Sclerosis/genetics , Neurogenic Inflammation/genetics , Animals , Antioxidants/therapeutic use , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female , Gene Regulatory Networks , High-Throughput Screening Assays , Humans , Immunity, Innate , Isoxazoles/therapeutic use , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Multiple Sclerosis/drug therapy , Neurogenic Inflammation/drug therapy , Oxidative Stress , Sequence Analysis, RNA , Single-Cell Analysis
4.
Nat Immunol ; 19(11): 1212-1223, 2018 11.
Article in English | MEDLINE | ID: mdl-30323343

ABSTRACT

Activation of innate immunity and deposition of blood-derived fibrin in the central nervous system (CNS) occur in autoimmune and neurodegenerative diseases, including multiple sclerosis (MS) and Alzheimer's disease (AD). However, the mechanisms that link disruption of the blood-brain barrier (BBB) to neurodegeneration are poorly understood, and exploration of fibrin as a therapeutic target has been limited by its beneficial clotting functions. Here we report the generation of monoclonal antibody 5B8, targeted against the cryptic fibrin epitope γ377-395, to selectively inhibit fibrin-induced inflammation and oxidative stress without interfering with clotting. 5B8 suppressed fibrin-induced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and the expression of proinflammatory genes. In animal models of MS and AD, 5B8 entered the CNS and bound to parenchymal fibrin, and its therapeutic administration reduced the activation of innate immunity and neurodegeneration. Thus, fibrin-targeting immunotherapy inhibited autoimmunity- and amyloid-driven neurotoxicity and might have clinical benefit without globally suppressing innate immunity or interfering with coagulation in diverse neurological diseases.


Subject(s)
Antibodies, Monoclonal/immunology , Fibrinogen/antagonists & inhibitors , Neurodegenerative Diseases/immunology , Animals , Epitopes , Humans , Inflammation/immunology , Mice , Rats
5.
Nature ; 621(7977): 188-195, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37648854

ABSTRACT

γδ T cells are potent anticancer effectors with the potential to target tumours broadly, independent of patient-specific neoantigens or human leukocyte antigen background1-5. γδ T cells can sense conserved cell stress signals prevalent in transformed cells2,3, although the mechanisms behind the targeting of stressed target cells remain poorly characterized. Vγ9Vδ2 T cells-the most abundant subset of human γδ T cells4-recognize a protein complex containing butyrophilin 2A1 (BTN2A1) and BTN3A1 (refs. 6-8), a widely expressed cell surface protein that is activated by phosphoantigens abundantly produced by tumour cells. Here we combined genome-wide CRISPR screens in target cancer cells to identify pathways that regulate γδ T cell killing and BTN3A cell surface expression. The screens showed previously unappreciated multilayered regulation of BTN3A abundance on the cell surface and triggering of γδ T cells through transcription, post-translational modifications and membrane trafficking. In addition, diverse genetic perturbations and inhibitors disrupting metabolic pathways in the cancer cells, particularly ATP-producing processes, were found to alter BTN3A levels. This induction of both BTN3A and BTN2A1 during metabolic crises is dependent on AMP-activated protein kinase (AMPK). Finally, small-molecule activation of AMPK in a cell line model and in patient-derived tumour organoids led to increased expression of the BTN2A1-BTN3A complex and increased Vγ9Vδ2 T cell receptor-mediated killing. This AMPK-dependent mechanism of metabolic stress-induced ligand upregulation deepens our understanding of γδ T cell stress surveillance and suggests new avenues available to enhance γδ T cell anticancer activity.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Neoplasms , Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocytes , Humans , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Cell Line , Cell Membrane/metabolism , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
6.
Nucleic Acids Res ; 52(D1): D679-D689, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37941138

ABSTRACT

WikiPathways (wikipathways.org) is an open-source biological pathway database. Collaboration and open science are pivotal to the success of WikiPathways. Here we highlight the continuing efforts supporting WikiPathways, content growth and collaboration among pathway researchers. As an evolving database, there is a growing need for WikiPathways to address and overcome technical challenges. In this direction, WikiPathways has undergone major restructuring, enabling a renewed approach for sharing and curating pathway knowledge, thus providing stability for the future of community pathway curation. The website has been redesigned to improve and enhance user experience. This next generation of WikiPathways continues to support existing features while improving maintainability of the database and facilitating community input by providing new functionality and leveraging automation.


Subject(s)
Databases, Factual
7.
Bioinformatics ; 39(9)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37707514

ABSTRACT

SUMMARY: Knowledge graphs are an increasingly common data structure for representing biomedical information. These knowledge graphs can easily represent heterogeneous types of information, and many algorithms and tools exist for querying and analyzing graphs. Biomedical knowledge graphs have been used in a variety of applications, including drug repurposing, identification of drug targets, prediction of drug side effects, and clinical decision support. Typically, knowledge graphs are constructed by centralization and integration of data from multiple disparate sources. Here, we describe BioThings Explorer, an application that can query a virtual, federated knowledge graph derived from the aggregated information in a network of biomedical web services. BioThings Explorer leverages semantically precise annotations of the inputs and outputs for each resource, and automates the chaining of web service calls to execute multi-step graph queries. Because there is no large, centralized knowledge graph to maintain, BioThings Explorer is distributed as a lightweight application that dynamically retrieves information at query time. AVAILABILITY AND IMPLEMENTATION: More information can be found at https://explorer.biothings.io and code is available at https://github.com/biothings/biothings_explorer.


Subject(s)
Algorithms , Pattern Recognition, Automated
8.
Nucleic Acids Res ; 49(D1): D613-D621, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33211851

ABSTRACT

WikiPathways (https://www.wikipathways.org) is a biological pathway database known for its collaborative nature and open science approaches. With the core idea of the scientific community developing and curating biological knowledge in pathway models, WikiPathways lowers all barriers for accessing and using its content. Increasingly more content creators, initiatives, projects and tools have started using WikiPathways. Central in this growth and increased use of WikiPathways are the various communities that focus on particular subsets of molecular pathways such as for rare diseases and lipid metabolism. Knowledge from published pathway figures helps prioritize pathway development, using optical character and named entity recognition. We show the growth of WikiPathways over the last three years, highlight the new communities and collaborations of pathway authors and curators, and describe various technologies to connect to external resources and initiatives. The road toward a sustainable, community-driven pathway database goes through integration with other resources such as Wikidata and allowing more use, curation and redistribution of WikiPathways content.


Subject(s)
Databases, Factual , COVID-19/pathology , Data Curation , Humans , Publications , User-Computer Interface
9.
Mol Syst Biol ; 17(10): e10387, 2021 10.
Article in English | MEDLINE | ID: mdl-34664389

ABSTRACT

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.


Subject(s)
COVID-19/immunology , Computational Biology/methods , Databases, Factual , SARS-CoV-2/immunology , Software , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/virology , Computer Graphics , Cytokines/genetics , Cytokines/immunology , Data Mining/statistics & numerical data , Gene Expression Regulation , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Immunity, Innate/drug effects , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/virology , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/immunology , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/virology , Protein Interaction Mapping , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Signal Transduction , Transcription Factors/genetics , Transcription Factors/immunology , Viral Proteins/genetics , Viral Proteins/immunology , COVID-19 Drug Treatment
10.
Nucleic Acids Res ; 46(D1): D661-D667, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29136241

ABSTRACT

WikiPathways (wikipathways.org) captures the collective knowledge represented in biological pathways. By providing a database in a curated, machine readable way, omics data analysis and visualization is enabled. WikiPathways and other pathway databases are used to analyze experimental data by research groups in many fields. Due to the open and collaborative nature of the WikiPathways platform, our content keeps growing and is getting more accurate, making WikiPathways a reliable and rich pathway database. Previously, however, the focus was primarily on genes and proteins, leaving many metabolites with only limited annotation. Recent curation efforts focused on improving the annotation of metabolism and metabolic pathways by associating unmapped metabolites with database identifiers and providing more detailed interaction knowledge. Here, we report the outcomes of the continued growth and curation efforts, such as a doubling of the number of annotated metabolite nodes in WikiPathways. Furthermore, we introduce an OpenAPI documentation of our web services and the FAIR (Findable, Accessible, Interoperable and Reusable) annotation of resources to increase the interoperability of the knowledge encoded in these pathways and experimental omics data. New search options, monthly downloads, more links to metabolite databases, and new portals make pathway knowledge more effortlessly accessible to individual researchers and research communities.


Subject(s)
Databases, Chemical , Metabolomics , Animals , Data Curation , Data Mining , Databases, Chemical/standards , Databases, Genetic , Humans , Metabolic Networks and Pathways , Quality Control , Search Engine , Software
11.
Nucleic Acids Res ; 44(D1): D488-94, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26481357

ABSTRACT

WikiPathways (http://www.wikipathways.org) is an open, collaborative platform for capturing and disseminating models of biological pathways for data visualization and analysis. Since our last NAR update, 4 years ago, WikiPathways has experienced massive growth in content, which continues to be contributed by hundreds of individuals each year. New aspects of the diversity and depth of the collected pathways are described from the perspective of researchers interested in using pathway information in their studies. We provide updates on extensions and services to support pathway analysis and visualization via popular standalone tools, i.e. PathVisio and Cytoscape, web applications and common programming environments. We introduce the Quick Edit feature for pathway authors and curators, in addition to new means of publishing pathways and maintaining custom pathway collections to serve specific research topics and communities. In addition to the latest milestones in our pathway collection and curation effort, we also highlight the latest means to access the content as publishable figures, as standard data files, and as linked data, including bulk and programmatic access.


Subject(s)
Databases, Chemical , Models, Biological , Gene Expression Profiling , Genes , Humans , Metabolomics
13.
PLoS Comput Biol ; 12(5): e1004941, 2016 05.
Article in English | MEDLINE | ID: mdl-27203685

ABSTRACT

Reactome and WikiPathways are two of the most popular freely available databases for biological pathways. Reactome pathways are centrally curated with periodic input from selected domain experts. WikiPathways is a community-based platform where pathways are created and continually curated by any interested party. The nascent collaboration between WikiPathways and Reactome illustrates the mutual benefits of combining these two approaches. We created a format converter that converts Reactome pathways to the GPML format used in WikiPathways. In addition, we developed the ComplexViz plugin for PathVisio which simplifies looking up complex components. The plugin can also score the complexes on a pathway based on a user defined criterion. This score can then be visualized on the complex nodes using the visualization options provided by the plugin. Using the merged collection of curated and converted Reactome pathways, we demonstrate improved pathway coverage of relevant biological processes for the analysis of a previously described polycystic ovary syndrome gene expression dataset. Additionally, this conversion allows researchers to visualize their data on Reactome pathways using PathVisio's advanced data visualization functionalities. WikiPathways benefits from the dedicated focus and attention provided to the content converted from Reactome and the wealth of semantic information about interactions. Reactome in turn benefits from the continuous community curation available on WikiPathways. The research community at large benefits from the availability of a larger set of pathways for analysis in PathVisio and Cytoscape. The pathway statistics results obtained from PathVisio are significantly better when using a larger set of candidate pathways for analysis. The conversion serves as a general model for integration of multiple pathway resources developed using different approaches.


Subject(s)
Metabolic Networks and Pathways , Models, Biological , Software , Computational Biology , Computer Graphics , Databases, Factual , Gene Ontology , Humans , Internet , Knowledge Bases
15.
Bioinformatics ; 29(16): 2066-7, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23749961

ABSTRACT

SUMMARY: The Network Ontology Analysis (NOA) plugin for Cytoscape implements the NOA algorithm for network-based enrichment analysis, which extends Gene Ontology annotations to network links, or edges. The plugin facilitates the annotation and analysis of one or more networks in Cytoscape according to user-defined parameters. In addition to tables, the NOA plugin also presents results in the form of heatmaps and overview networks in Cytoscape, which can be exported for publication figures. AVAILABILITY: The NOA plugin is an open source, Java program for Cytoscape version 2.8 available via the Cytoscape App Store (http://apps.cytoscape.org/apps/noa) and plugin manager. A detailed user manual is available at http://nrnb.org/tools/noa. .ucsf.edu


Subject(s)
Gene Ontology , Software , Algorithms , Cell Cycle , Disease , Gene Regulatory Networks , Humans , Molecular Sequence Annotation , Protein Interaction Mapping
16.
Nucleic Acids Res ; 40(Database issue): D1301-7, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22096230

ABSTRACT

Here, we describe the development of WikiPathways (http://www.wikipathways.org), a public wiki for pathway curation, since it was first published in 2008. New features are discussed, as well as developments in the community of contributors. New features include a zoomable pathway viewer, support for pathway ontology annotations, the ability to mark pathways as private for a limited time and the availability of stable hyperlinks to pathways and the elements therein. WikiPathways content is freely available in a variety of formats such as the BioPAX standard, and the content is increasingly adopted by external databases and tools, including Wikipedia. A recent development is the use of WikiPathways as a staging ground for centrally curated databases such as Reactome. WikiPathways is seeing steady growth in the number of users, page views and edits for each pathway. To assess whether the community curation experiment can be considered successful, here we analyze the relation between use and contribution, which gives results in line with other wiki projects. The novel use of pathway pages as supplementary material to publications, as well as the addition of tailored content for research domains, is expected to stimulate growth further.


Subject(s)
Databases, Factual , Metabolic Networks and Pathways , Computational Biology , Genes , Internet , Metabolic Networks and Pathways/genetics , Proteins/metabolism
17.
Bioinformatics ; 28(14): 1943-4, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22576176

ABSTRACT

UNLABELLED: We present a Cytoscape plugin called Mosaic to support interactive network annotation, partitioning, layout and coloring based on gene ontology or other relevant annotations. AVAILABILITY: Mosaic is distributed for free under the Apache v2.0 open source license and can be downloaded via the Cytoscape plugin manager. A detailed user manual is available on the Mosaic web site (http://nrnb.org/tools/mosaic).


Subject(s)
Computational Biology/methods , Molecular Sequence Annotation/methods , Software , Algorithms , Color , User-Computer Interface
18.
Bioinformatics ; 28(16): 2209-10, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22743224

ABSTRACT

UNLABELLED: We introduce GO-Elite, a flexible and powerful pathway analysis tool for a wide array of species, identifiers (IDs), pathways, ontologies and gene sets. In addition to the Gene Ontology (GO), GO-Elite allows the user to perform over-representation analysis on any structured ontology annotations, pathway database or biological IDs (e.g. gene, protein or metabolite). GO-Elite exploits the structured nature of biological ontologies to report a minimal set of non-overlapping terms. The results can be visualized on WikiPathways or as networks. Built-in support is provided for over 60 species and 50 ID systems, covering gene, disease and phenotype ontologies, multiple pathway databases, biomarkers, and transcription factor and microRNA targets. GO-Elite is available as a web interface, GenMAPP-CS plugin and as a cross-platform application. AVAILABILITY: http://www.genmapp.org/go_elite


Subject(s)
Computational Biology/methods , Databases, Genetic , Information Storage and Retrieval/methods , Software , Internet , User-Computer Interface , Vocabulary, Controlled
19.
ArXiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131885

ABSTRACT

Knowledge graphs are an increasingly common data structure for representing biomedical information. These knowledge graphs can easily represent heterogeneous types of information, and many algorithms and tools exist for querying and analyzing graphs. Biomedical knowledge graphs have been used in a variety of applications, including drug repurposing, identification of drug targets, prediction of drug side effects, and clinical decision support. Typically, knowledge graphs are constructed by centralization and integration of data from multiple disparate sources. Here, we describe BioThings Explorer, an application that can query a virtual, federated knowledge graph derived from the aggregated information in a network of biomedical web services. BioThings Explorer leverages semantically precise annotations of the inputs and outputs for each resource, and automates the chaining of web service calls to execute multi-step graph queries. Because there is no large, centralized knowledge graph to maintain, BioThing Explorer is distributed as a lightweight application that dynamically retrieves information at query time. More information can be found at https://explorer.biothings.io, and code is available at https://github.com/biothings/biothings_explorer.

20.
J Clin Transl Sci ; 7(1): e214, 2023.
Article in English | MEDLINE | ID: mdl-37900350

ABSTRACT

Knowledge graphs have become a common approach for knowledge representation. Yet, the application of graph methodology is elusive due to the sheer number and complexity of knowledge sources. In addition, semantic incompatibilities hinder efforts to harmonize and integrate across these diverse sources. As part of The Biomedical Translator Consortium, we have developed a knowledge graph-based question-answering system designed to augment human reasoning and accelerate translational scientific discovery: the Translator system. We have applied the Translator system to answer biomedical questions in the context of a broad array of diseases and syndromes, including Fanconi anemia, primary ciliary dyskinesia, multiple sclerosis, and others. A variety of collaborative approaches have been used to research and develop the Translator system. One recent approach involved the establishment of a monthly "Question-of-the-Month (QotM) Challenge" series. Herein, we describe the structure of the QotM Challenge; the six challenges that have been conducted to date on drug-induced liver injury, cannabidiol toxicity, coronavirus infection, diabetes, psoriatic arthritis, and ATP1A3-related phenotypes; the scientific insights that have been gleaned during the challenges; and the technical issues that were identified over the course of the challenges and that can now be addressed to foster further development of the prototype Translator system. We close with a discussion on Large Language Models such as ChatGPT and highlight differences between those models and the Translator system.

SELECTION OF CITATIONS
SEARCH DETAIL