Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
BMC Sports Sci Med Rehabil ; 15(1): 112, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37715283

ABSTRACT

BACKGROUND: Abdominal bracing is a maneuver widely used by rehabilitation specialists and sports trainers to improve spinal stability. This study aimed to investigate how lifting tasks with and without abdominal bracing affect the respiratory function of the diaphragm. METHODS: M-mode ultrasonographic assessment of diaphragmatic motion combined with spirometry was performed on 31 healthy adults. Participants were asked to breathe continuously whilst lifting a load with spontaneous abdominal muscle contraction (natural loaded breathing) and abdominal bracing (AB loaded breathing). RESULTS: Pearson's correlations revealed strong correlations between ultrasonography and spirometry measures (p < 0.001) for all types of breathing: tidal breathing (r = 0.709, r2 = 0.503), natural loaded breathing (r = 0.731, r2 = 0.534) and AB loaded breathing (r = 0.795, r2 = 0.632). Using paired-samples t-tests, the natural loaded breathing ultrasonography revealed more caudal diaphragm positions during inspiration (p < 0.001) but not during expiration (p = .101). Spirometry demonstrated lower lung volumes (L) at the end of inspiration and expiration (p < 0.001), with no changes in total lung volume (p = 0.06). The AB loaded breathing ultrasonography revealed more caudal diaphragm positions during inspiration (p = 0.002) but not during expiration (p = 0.05). Spirometry demonstrated lower lung volumes at the end of inspiration (p < 0.001), expiration (p = 0.002), and total lung volumes (p = 0.019). CONCLUSION: This study demonstrated that abdominal bracing performed during a lifting task reduces lung volume despite an increase in diaphragmatic motion. Diaphragm excursions strongly correlate with lung volumes even under postural loading. TRIAL REGISTRATION: The study was prospectively registered on 8 April 2021 at ClinicalTrials.gov with identification number NCT04841109.

2.
PLoS One ; 17(10): e0275389, 2022.
Article in English | MEDLINE | ID: mdl-36215306

ABSTRACT

OBJECTIVES: The diaphragm changes position and respiratory excursions during postural loading. However, it is unclear how it reacts to lifting a load while breath-holding or breathing with simultaneous voluntary contraction of the abdominal muscles (VCAM). This study analyzed diaphragm motion in healthy individuals during various postural-respiratory situations. METHODS: 31 healthy participants underwent examination of the diaphragm using M-mode ultrasonography, spirometry, and abdominal wall tension (AWT) measurements. All recordings were performed simultaneously during three consecutive scenarios, i.e., 1. Lifting a load without breathing; 2. Lifting a load and breathing naturally; 3. Lifting a load and breathing with simultaneous VCAM. RESULTS: Using paired-samples t-tests, lifting a load without breathing displaced the diaphragm's expiratory position more caudally (P < .001), with no change noted in the inspiratory position (P = .373). During lifting a load breathing naturally, caudal displacement of the diaphragm's inspiratory position was presented (P < .001), with no change noted in the expiratory position (P = 0.20) compared to tidal breathing. Total diaphragm excursion was greater when loaded (P = .002). Lifting a load and breathing with VCAM demonstrated no significant changes in diaphragm position for inspiration, expiration, or total excursion compared to natural loaded breathing. For all scenarios, AWT measures were greater when lifting a load (P < .001). CONCLUSION: In healthy individuals, caudal displacement and greater excursions of the diaphragm occurred when lifting a load. The postural function of the diaphragm is independent of its respiratory activity and is not reduced by the increase in AWT.


Subject(s)
Diaphragm , Respiration , Diaphragm/diagnostic imaging , Diaphragm/physiology , Exhalation , Humans , Muscle Contraction , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL