Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.184
Filter
Add more filters

Publication year range
1.
Cell ; 164(1-2): 279-292, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26771496

ABSTRACT

Mammalian interspecific hybrids provide unique advantages for mechanistic studies of speciation, gene expression regulation, and X chromosome inactivation (XCI) but are constrained by their limited natural resources. Previous artificially generated mammalian interspecific hybrid cells are usually tetraploids with unstable genomes and limited developmental abilities. Here, we report the generation of mouse-rat allodiploid embryonic stem cells (AdESCs) by fusing haploid ESCs of the two species. The AdESCs have a stable allodiploid genome and are capable of differentiating into all three germ layers and early-stage germ cells. Both the mouse and rat alleles have comparable contributions to the expression of most genes. We have proven AdESCs as a powerful tool to study the mechanisms regulating X chromosome inactivation and to identify X inactivation-escaping genes, as well as to efficiently identify genes regulating phenotypic differences between species. A similar method could be used to create hybrid AdESCs of other distantly related species.


Subject(s)
Cell Fusion/methods , Chimera/genetics , Embryonic Stem Cells/cytology , Hybrid Cells , Mice , Rats , Animals , Cell Differentiation , Embryoid Bodies , Embryonic Stem Cells/metabolism , Female , Haploidy , Male , Mice, Inbred Strains , Rats, Inbred F344 , Species Specificity , X Chromosome Inactivation
2.
Proc Natl Acad Sci U S A ; 121(2): e2311930121, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38175861

ABSTRACT

When making contact with an undercooled target, a drop freezes. The colder the target is, the more rapid the freezing is supposed to be. In this research, we explore the impact of droplets on cold granular material. As the undercooling degree increases, the bulk freezing of the droplet is delayed by at least an order of magnitude. The postponement of the overall solidification is accompanied by substantial changes in dynamics, including the spreading-retraction process, satellite drop generation, and cratering in the target. The solidification of the wetted pores in the granular target primarily causes these effects. The freezing process over the pore dimension occurs rapidly enough to match the characteristic timescales of impact dynamics at moderate undercooling degrees. As a result, the hydrophilic impact appears "hydrophobic," and the dimension of the solidified droplet shrinks. A monolayer of cold grains on a surface can reproduce these consequences. Our research presents a potential approach to regulate solidified morphology for subfreezing drop impacts. It additionally sheds light on the impact scenario of strong coupling between the dynamics and solidification.

3.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38833322

ABSTRACT

Recent advances in tumor molecular subtyping have revolutionized precision oncology, offering novel avenues for patient-specific treatment strategies. However, a comprehensive and independent comparison of these subtyping methodologies remains unexplored. This study introduces 'Themis' (Tumor HEterogeneity analysis on Molecular subtypIng System), an evaluation platform that encapsulates a few representative tumor molecular subtyping methods, including Stemness, Anoikis, Metabolism, and pathway-based classifications, utilizing 38 test datasets curated from The Cancer Genome Atlas (TCGA) and significant studies. Our self-designed quantitative analysis uncovers the relative strengths, limitations, and applicability of each method in different clinical contexts. Crucially, Themis serves as a vital tool in identifying the most appropriate subtyping methods for specific clinical scenarios. It also guides fine-tuning existing subtyping methods to achieve more accurate phenotype-associated results. To demonstrate the practical utility, we apply Themis to a breast cancer dataset, showcasing its efficacy in selecting the most suitable subtyping methods for personalized medicine in various clinical scenarios. This study bridges a crucial gap in cancer research and lays a foundation for future advancements in individualized cancer therapy and patient management.


Subject(s)
Precision Medicine , Humans , Precision Medicine/methods , Neoplasms/genetics , Neoplasms/classification , Neoplasms/therapy , Biomarkers, Tumor/genetics , Computational Biology/methods , Medical Oncology/methods , Breast Neoplasms/genetics , Breast Neoplasms/classification , Breast Neoplasms/therapy , Female
4.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36813563

ABSTRACT

Cell-state transition can reveal additional information from single-cell ribonucleic acid (RNA)-sequencing data in time-resolved biological phenomena. However, most of the current methods are based on the time derivative of the gene expression state, which restricts them to the short-term evolution of cell states. Here, we present single-cell State Transition Across-samples of RNA-seq data (scSTAR), which overcomes this limitation by constructing a paired-cell projection between biological conditions with an arbitrary time span by maximizing the covariance between two feature spaces using partial least square and minimum squared error methods. In mouse ageing data, the response to stress in CD4+ memory T cell subtypes was found to be associated with ageing. A novel Treg subtype characterized by mTORC activation was identified to be associated with antitumour immune suppression, which was confirmed by immunofluorescence microscopy and survival analysis in 11 cancers from The Cancer Genome Atlas Program. On melanoma data, scSTAR improved immunotherapy-response prediction accuracy from 0.8 to 0.96.


Subject(s)
Gene Expression Profiling , RNA , Animals , Mice , RNA/genetics , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Genome
5.
Genes Chromosomes Cancer ; 63(5): e23243, 2024 05.
Article in English | MEDLINE | ID: mdl-38747337

ABSTRACT

Breast cancer susceptibility 1/2 (BRCA1/2) genes play a crucial role in DNA damage repair, yet mutations in these genes increase the susceptibility to tumorigenesis. Exploiting the synthetic lethality mechanism between BRCA1/2 mutations and poly(ADP-ribose) polymerase (PARP) inhibition has led to the development and clinical approval of PARP inhibitor (PARPi), representing a milestone in targeted therapy for BRCA1/2 mutant tumors. This approach has paved the way for leveraging synthetic lethality in tumor treatment strategies. Despite the initial success of PARPis, resistance to these agents diminishes their efficacy in BRCA1/2-mutant tumors. Investigations into PARPi resistance have identified replication fork stability and homologous recombination repair as key factors sensitive to PARPis. Additionally, studies suggest that replication gaps may also confer sensitivity to PARPis. Moreover, emerging evidence indicates a correlation between PARPi resistance and cisplatin resistance, suggesting a potential overlap in the mechanisms underlying resistance to both agents. Given these findings, it is imperative to explore the interplay between replication gaps and PARPi resistance, particularly in the context of platinum resistance. Understanding the impact of replication gaps on PARPi resistance may offer insights into novel therapeutic strategies to overcome resistance mechanisms and enhance the efficacy of targeted therapies in BRCA1/2-mutant tumors.


Subject(s)
BRCA1 Protein , BRCA2 Protein , Drug Resistance, Neoplasm , Mutation , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Drug Resistance, Neoplasm/genetics , BRCA2 Protein/genetics , BRCA1 Protein/genetics , Female , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Neoplasms/genetics , Neoplasms/drug therapy
6.
J Am Chem Soc ; 146(11): 7295-7304, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38364093

ABSTRACT

All-weather operation is considered an ultimate pursuit of the practical development of sodium-ion batteries (SIBs), however, blocked by a lack of suitable electrolytes at present. Herein, by introducing synergistic manipulation mechanisms driven by phosphorus/silicon involvement, the compact electrode/electrolyte interphases are endowed with improved interfacial Na-ion transport kinetics and desirable structural/thermal stability. Therefore, the modified carbonate-based electrolyte successfully enables all-weather adaptability for long-term operation over a wide temperature range. As a verification, the half-cells using the designed electrolyte operate stably over a temperature range of -25 to 75 °C, accompanied by a capacity retention rate exceeding 70% even after 1700 cycles at 60 °C. More importantly, the full cells assembled with Na3V2(PO4)2O2F cathode and hard carbon anode also have excellent cycling stability, exceeding 500 and 1000 cycles at -25 to 50 °C and superb temperature adaptability during all-weather dynamic testing with continuous temperature change. In short, this work proposes an advanced interfacial regulation strategy targeted at the all-climate SIB operation, which is of good practicability and reference significance.

7.
J Am Chem Soc ; 146(7): 4652-4664, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38265705

ABSTRACT

Since sodium-ion batteries (SIBs) have become increasingly commercialized in recent years, Na3V2(PO4)2O2F (NVPOF) offers promising economic potential as a cathode for SIBs because of its high operating voltage and energy density. According to reports, NVPOF performs poorly in normal commercial poly(vinylidene fluoride) (PVDF) binder systems and performs best in combination with aqueous binder. Although in line with the concept of green and sustainable development for future electrode preparation, aqueous binders are challenging to achieve high active material loadings at the electrode level, and their relatively high surface tension tends to cause the active material on the electrode sheet to crack or even peel off from the collector. Herein, a cross-linkable and easily commercial hybrid binder constructed by intermolecular hydrogen bonding (named HPP) has been developed and utilized in an NVPOF system, which enables the generation of a stable cathode electrolyte interphase on the surface of active materials. According to theoretical simulations, the HPP binder enhances electronic/ionic conductivity, which greatly lowers the energy barrier for Na+ migration. Additionally, the strong hydrogen-bond interactions between the HPP binder and NVPOF effectively prevent electrolyte corrosion and transition-metal dissolution, lessen the lattice volume effect, and ensure structural stability during cycling. The HPP-based NVPOF offers considerably improved rate capability and cycling performance, benefiting from these benefits. This comprehensive binder can be extended to the development of next-generation energy storage technologies with superior performance.

8.
Mol Med ; 30(1): 58, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720283

ABSTRACT

BACKGROUND: Vascular calcification (VC) is a complication in diabetes mellitus (DM) patients. Osteogenic phenotype switching of vascular smooth muscle cells (VSMCs) plays a critical role in diabetes-related VC. Mitophagy can inhibit phenotype switching in VSMCs. This study aimed to investigate the role of the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin 4 (EX4) in mitophagy-induced phenotype switching. MATERIALS AND METHODS: The status of VC in T2DM mice was monitored using Von Kossa and Alizarin Red S (ARS) staining in mouse aortic tissue. Human aortic smooth muscle cells were cultured in high glucose (HG) and ß-glycerophosphate (ß-GP) conditioned medium. Accumulation of LC3B and p62 was detected in the mitochondrial fraction. The effect of EX4 in vitro and in vivo was investigated by knocking down AMPKα1. RESULTS: In diabetic VC mice, EX4 decreased the percentage of von Kossa/ARS positive area. EX4 inhibited osteogenic differentiation of HG/ß-GP-induced VSMCs. In HG/ß-GP-induced VSMCs, the number of mitophagosomes was increased, whereas the addition of EX4 restored mitochondrial function, increased the number of mitophagosome-lysosome fusions, and reduced p62 in mitochondrial frictions. EX4 increased the phosphorylation of AMPKα (Thr172) and ULK1 (Ser555) in HG/ß-GP-induced VSMCs. After knockdown of AMPKα1, ULK1 could not be activated by EX4. The accumulation of LC3B and p62 could not be reduced after AMPKα1 knockdown. Knockdown of AMPKα1 negated the therapeutic effects of EX4 on VC of diabetic mice. CONCLUSION: EX4 could promote mitophagy by activating the AMPK signaling pathway, attenuate insufficient mitophagy, and thus inhibit the osteogenic phenotype switching of VSMCs.


Subject(s)
AMP-Activated Protein Kinases , Exenatide , Glucagon-Like Peptide-1 Receptor , Mitophagy , Signal Transduction , Vascular Calcification , Animals , Mitophagy/drug effects , Vascular Calcification/etiology , Vascular Calcification/metabolism , Vascular Calcification/drug therapy , Signal Transduction/drug effects , Mice , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Male , AMP-Activated Protein Kinases/metabolism , Humans , Exenatide/pharmacology , Exenatide/therapeutic use , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Disease Models, Animal , Mice, Inbred C57BL
9.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-35598331

ABSTRACT

Differential expression (DE) gene detection in single-cell ribonucleic acid (RNA)-sequencing (scRNA-seq) data is a key step to understand the biological question investigated. Filtering genes is suggested to improve the performance of DE methods, but the influence of filtering genes has not been demonstrated. Furthermore, the optimal methods for different scRNA-seq datasets are divergent, and different datasets should benefit from data-specific DE gene detection strategies. However, existing tools did not take gene filtering into consideration. There is a lack of metrics for evaluating the optimal method on experimental datasets. Based on two new metrics, we propose single-cell Consensus Optimization of Differentially Expressed gene detection, an R package to automatically optimize DE gene detection for each experimental scRNA-seq dataset.


Subject(s)
RNA , Single-Cell Analysis , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Software
10.
Bioinformatics ; 39(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-37018146

ABSTRACT

SUMMARY: We developed the eccDB database to integrate available resources for extrachromosomal circular DNA (eccDNA) data. eccDB is a comprehensive repository for storing, browsing, searching, and analyzing eccDNAs from multispecies. The database provides regulatory and epigenetic information on eccDNAs, with a focus on analyzing intrachromosomal and interchromosomal interactions to predict their transcriptional regulatory functions. Moreover, eccDB identifies eccDNAs from unknown DNA sequences and analyzes the functional and evolutionary relationships of eccDNAs among different species. Overall, eccDB offers web-based analytical tools and a comprehensive resource for biologists and clinicians to decipher the molecular regulatory mechanisms of eccDNAs. AVAILABILITY AND IMPLEMENTATION: eccDB is freely available at http://www.xiejjlab.bio/eccDB.


Subject(s)
Chromatin , DNA, Circular , Chromatin/genetics , Chromosomes , DNA , Base Sequence
11.
Ophthalmology ; 131(6): 692-699, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38160880

ABSTRACT

PURPOSE: Chronic kidney disease (CKD) may elevate susceptibility to age-related macular degeneration (AMD) because of shared risk factors, pathogenic mechanisms, and genetic polymorphisms. Given the inconclusive findings in prior studies, we investigated this association using extensive datasets in the Asian Eye Epidemiology Consortium. DESIGN: Cross-sectional study. PARTICIPANTS: Fifty-one thousand two hundred fifty-three participants from 10 distinct population-based Asian studies. METHODS: Age-related macular degeneration was defined using the Wisconsin Age-Related Maculopathy Grading System, the International Age-Related Maculopathy Epidemiological Study Group Classification, or the Beckman Clinical Classification. Chronic kidney disease was defined as estimated glomerular filtration rate (eGFR) of less than 60 ml/min per 1.73 m2. A pooled analysis using individual-level participant data was performed to examine the associations between CKD and eGFR with AMD (early and late), adjusting for age, sex, hypertension, diabetes, body mass index, smoking status, total cholesterol, and study groups. MAIN OUTCOME MEASURES: Odds ratio (OR) of early and late AMD. RESULTS: Among 51 253 participants (mean age, 54.1 ± 14.5 years), 5079 had CKD (9.9%). The prevalence of early AMD was 9.0%, and that of late AMD was 0.71%. After adjusting for confounders, individuals with CKD were associated with higher odds of late AMD (OR, 1.46; 95% confidence interval [CI], 1.11-1.93; P = 0.008). Similarly, poorer kidney function (per 10-unit eGFR decrease) was associated with late AMD (OR, 1.12; 95% CI, 1.05-1.19; P = 0.001). Nevertheless, CKD and eGFR were not associated significantly with early AMD (all P ≥ 0.149). CONCLUSIONS: Pooled analysis from 10 distinct Asian population-based studies revealed that CKD and compromised kidney function are associated significantly with late AMD. This finding further underscores the importance of ocular examinations in patients with CKD. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Subject(s)
Glomerular Filtration Rate , Macular Degeneration , Renal Insufficiency, Chronic , Humans , Male , Cross-Sectional Studies , Female , Middle Aged , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/physiopathology , Aged , Macular Degeneration/physiopathology , Macular Degeneration/epidemiology , Risk Factors , Asian People/ethnology , Adult , Odds Ratio , Prevalence , Aged, 80 and over
12.
Drug Metab Dispos ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777597

ABSTRACT

Hydrolases represent an essential class of enzymes indispensable for the metabolism of various clinically essential medications. Individuals exhibit marked differences in the expression and activation of hydrolases, resulting in significant variability in the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs metabolized by these enzymes. The regulation of hydrolase expression and activity involves both genetic polymorphisms and nongenetic factors. This review examines the current understanding of genetic and nongenetic regulators of six clinically significant hydrolases, including Carboxylesterase 1 (CES1), Carboxylesterase 2 (CES2), Arylacetamide Deacetylase (AADAC), Paraoxonase 1 (PON1), Paraoxonase 3 (PON3), and Cathepsin A (CTSA). We explore genetic variants linked to the expression and activity of the hydrolases and their effects on the PK and PD of their substrate drugs. Regarding nongenetic regulators, we focus on the inhibitors and inducers of these enzymes. Additionally, we examine the developmental expression patterns and gender differences in the hydrolases when pertinent information was available. Many genetic and nongenetic regulators were found to be associated with the expression and activity of the hydrolases and PK and PD. However, hydrolases remain generally understudied compared to other drug-metabolizing enzymes, such as cytochrome P450s. The clinical significance of genetic and nongenetic regulators has not yet been firmly established for the majority of hydrolases. Comprehending the mechanisms that underpin the regulation of these enzymes holds the potential to refine therapeutic regimens, thereby enhancing the efficacy and safety of drugs metabolized by the hydrolases. Significance Statement Hydrolases play a crucial role in the metabolism of numerous clinically important medications. Genetic polymorphisms and nongenetic regulators can affect hydrolases' expression and activity, consequently influencing the exposure and clinical outcomes of hydrolase substrate drugs. A comprehensive understanding of hydrolase regulation can refine therapeutic regimens, ultimately enhancing the efficacy and safety of drugs metabolized by the enzymes.

13.
Drug Metab Dispos ; 52(2): 143-152, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38050015

ABSTRACT

Cytochrome P450 2D6 (CYP2D6) is a critical hepatic drug-metabolizing enzyme in humans, responsible for metabolizing approximately 20%-25% of commonly used medications such as codeine, desipramine, fluvoxamine, paroxetine, and tamoxifen. The CYP2D6 gene is highly polymorphic, resulting in substantial interindividual variability in its catalytic function and the pharmacokinetics and therapeutic outcomes of its substrate drugs. Although many functional CYP2D6 variants have been discovered and validated, a significant portion of the variability in the expression and activity of CYP2D6 remains unexplained. In this study, we performed a genome-wide association study (GWAS) to identify novel variants associated with CYP2D6 protein expression in individual human livers, followed by a conditional analysis to control for the effect of functional CYP2D6 star alleles. We also examined their impact on hepatic CYP2D6 activity. Genotyping on a genome-wide scale was achieved using the Illumina Multi-Ethnic Genotyping Array (MEGA). A data-independent acquisition (DIA)-based proteomics method was used to quantify CYP2D6 protein concentrations. CYP2D6 activity was determined by measuring the dextromethorphan O-demethylation in individual human liver s9 fractions. The GWAS identified 44 single nuclear polymorphisms (SNPs) that are significantly associated with CYP2D6 protein expressions with a P value threshold of 5.0 × 10-7 After the conditional analysis, five SNPs, including the cis-variants rs1807493 and rs1062753 and the trans-variants rs4073010, rs729559, and rs80274432, emerged as independent variants significantly correlated with hepatic CYP2D6 protein expressions. Notably, four of these SNPs, except for rs80274432, also exhibited a significant association with CYP2D6 activities in human livers, suggesting their potential as novel and independent cis- and trans-variants regulating CYP2D6. SIGNIFICANT STATEMENT: Using individual human livers, we identified four novel cis- and trans-pQTLs/aQTLs (protein quantitative trait loci/activity quantitative trait loci) of Cytochrome P450 2D6 (CYP2D6) that are independent from known functional CYP2D6 star alleles. This study connects the CYP2D6 gene expression and activity, enhancing our understanding of the genetic variants associated with CYP2D6 protein expression and activity, potentially advancing our insight into the interindividual variability in CYP2D6 substrate medication response.


Subject(s)
Cytochrome P-450 CYP2D6 , Genome-Wide Association Study , Humans , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Fluvoxamine , Liver/metabolism , Paroxetine
14.
Cytotherapy ; 26(6): 606-615, 2024 06.
Article in English | MEDLINE | ID: mdl-38483364

ABSTRACT

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) hold great promise in the treatment of diabetic retinopathy (DR), as evidenced by increasing preclinical and clinical studies. However, the absence of standardized and industrialized clinical-grade donor cells hampers the continued development and large-scale clinical application of MSCs-based therapies for DR. Previously, we have identified a unique population of MSCs generated from a clinical-grade human embryonic stem cell (hESC) line under Good Manufacturing Practice conditions that could be a potential source to address the issues. Here, we investigated the therapeutic potential of the clinical-grade hESC line-derived MSCs (hESC-MSCs) on db/db mice with DR. METHODS: hESC-MSCs were initially characterized by morphological assessment, flow cytometry analysis and trilineage differentiation assays. These cells (5 × 106 cells) were then transplanted intravenously into 12-week-old db/db mice via tail vein, with phosphate-buffered saline transplantation and untreated groups used as controls. The retinal alterations in neural functions and microvascular perfusions, and inflammatory responses in peripheral blood and retina were evaluated at 4 and 6 weeks after transplantation using electroretinography, optical coherence tomography angiography and flow cytometry, respectively. Body weight and fasting blood glucose (FBG) levels were also measured to investigate their systemic implications. RESULTS: Compared with controls, intravenous transplantation of hESC-MSCs could significantly: (i) enhance impaired retinal electroretinography functions (including amplitudes of a-, b-wave and oscillatory potentials) at 4 weeks after transplantation; (ii) alleviate microvascular dysfunctions, especially in the inner retina with significance (including reducing non-perfusion area and increasing vascular area density) at 4 weeks after transplantation; (iii) decrease FBG levels at 4 weeks after transplantation and induce weight loss up to 6 weeks after transplantation and (iv) increase both peripheral blood and retinal interleukin-10 levels at 4 weeks after transplantation and modulate peripheral blood inflammatory cytokines and chemokines levels, such as monocyte chemotactic protein-1, up to 6 weeks after transplantation. CONCLUSIONS: The findings of our study indicated that intravenous transplantation of hESC-MSCs ameliorated retinal neural and microvascular dysfunctions, regulated body weight and FBG and modulated peripheral blood and retinal inflammation responses in a mouse model of DR. These results suggest that hESC-MSCs could be a potentially effective clinical-grade cell source for the treatment of DR.


Subject(s)
Diabetic Retinopathy , Human Embryonic Stem Cells , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Humans , Diabetic Retinopathy/therapy , Mice , Human Embryonic Stem Cells/cytology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Cell Differentiation , Retina , Disease Models, Animal , Diabetes Mellitus, Experimental/therapy
15.
Int Arch Allergy Immunol ; 185(1): 84-98, 2024.
Article in English | MEDLINE | ID: mdl-37866360

ABSTRACT

INTRODUCTION: Atopic dermatitis (AD) is a prevalent and chronic inflammatory skin disease characterized by Th2 cell-mediated type 2 inflammation. Emerging evidence indicated that AD patients exhibit an increased incidence of oral disorders. In the present study, we sought mechanistic insights into how AD affects periodontitis. METHODS: Onset of AD was induced by 2,4-dinitrochlorobenzene (DNCB). Furthermore, we induced periodontitis (P) in AD mice. The effect of AD in promoting inflammation and bone resorption in gingiva was evaluated. Hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining, immunofluorescence assay, and flow cytometry were used to investigate histomorphology and cytology analysis, respectively. RNA sequencing of oral mucosa is used tissues to further understand the dynamic transcriptome changes. 16S rRNA microbial analysis is used to profile oral microbial composition. RESULTS: Compared to control group, mice in AD group showed inflammatory signatures and infiltration of a proallergic Th2 (Th2A)-like subset in oral mucosa but not periodontitis, as identified by not substantial changes in mucosa swelling, alveolar bone loss, and TRAP+ osteoclasts infiltration. Similarly, more Th2A-like cell infiltration and interleukin-4 levels were significantly elevated in the oral mucosa of DNCB-P mice compared to P mice. More importantly, AD exacerbates periodontitis when periodontitis has occurred and the severity of periodontitis increased with aggravation of dermatitis. Transcriptional analysis revealed that aggravated periodontitis was positively correlated with more macrophage infiltration and abundant CCL3 secreted. AD also altered oral microbiota, indicating the re-organization of extracellular matrix. CONCLUSIONS: These data provide solid evidence about exacerbation of periodontitis caused by type 2 dermatitis, advancing our understanding in cellular and microbial changes during AD-periodontitis progression.


Subject(s)
Dermatitis, Atopic , Periodontitis , Humans , Animals , Mice , Dermatitis, Atopic/chemically induced , Dinitrochlorobenzene/metabolism , Dinitrochlorobenzene/pharmacology , Dinitrochlorobenzene/therapeutic use , RNA, Ribosomal, 16S , Immunoglobulin E/metabolism , Anti-Inflammatory Agents/pharmacology , Skin , Inflammation/metabolism , Periodontitis/complications , Periodontitis/metabolism , Mice, Inbred BALB C , Cytokines/metabolism
16.
Arch Microbiol ; 206(4): 141, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441685

ABSTRACT

A strictly anaerobic, motile bacterium, designated as strain Ai-910T, was isolated from the sludge of an anaerobic digestion tank in China. Cells were Gram-stain-negative rods. Optimal growth was observed at 38 °C (growth range 25-42 °C), pH 8.5 (growth range 5.5-10.5), and under a NaCl concentration of 0.06% (w/v) (range 0-2.0%). Major cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The respiratory quinone was MK-7. Using xylose as the growth substrate, succinate was produced as the fermentation product. Phylogenetic analysis based on the 16 S rRNA gene sequences indicated that strain Ai-910T formed a distinct phylogenetic lineage that reflects a new genus in the family Marinilabiliaceae, sharing high similarities to Alkaliflexus imshenetskii Z-7010T (92.78%), Alkalitalea saponilacus SC/BZ-SP2T (92.51%), and Geofilum rubicundum JAM-BA0501T (92.36%). Genomic similarity (average nucleotide identity and digital DNA-DNA hybridization) values between strain Ai-910T and its phylogenetic neighbors were below 65.27 and 16.90%, respectively, indicating that strain Ai-910T represented a novel species. The average amino acid identity between strain Ai-910T and other related members of the family Marinilabiliaceae were below 69.41%, supporting that strain Ai-910T was a member of a new genus within the family Marinilabiliaceae. Phylogenetic, genomic, and phenotypic analysis revealed that strain Ai-910T was distinguished from other phylogenetic relatives within the family Marinilabiliaceae. The genome size was 3.10 Mbp, and the DNA G + C content of the isolate was 42.8 mol%. Collectively, differences of the phenotypic and phylogenetic features of strain Ai-910T from its close relatives suggest that strain Ai-910T represented a novel species in a new genus of the family Marinilabiliaceae, for which the name Xiashengella succiniciproducens gen. nov., sp. nov. was proposed. The type strain of Xiashengella succiniciproducens is Ai-910T (= CGMCC 1.17893T = KCTC 25,304T).


Subject(s)
Bacteria , Succinic Acid , Anaerobiosis , Phylogeny , Succinates , DNA
17.
Langmuir ; 40(13): 7242-7248, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38501957

ABSTRACT

The metal-thiol interface is ubiquitous in nanotechnology and surface chemistry. It is not only used to construct nanocomposites but also plays a decisive role in the properties of these materials. When organothiol molecules bind to the gold surface, there is still controversy over whether sulfhydryl groups can form disulfide bonds and whether these disulfide bonds can remain stable on the gold surface. Here, we investigate the intrinsic properties of sulfhydryl groups on the gold surface at the single-molecule level using a scanning tunneling microscope break junction technique. Our findings indicate that sulfhydryl groups can react with each other to form disulfide bonds on the gold surface, and the electric field can promote the sulfhydryl coupling reaction. In addition to these findings, ultraviolet irradiation is used to effectively regulate the coupling between sulfhydryl groups, leading to the formation and cleavage of disulfide bonds. These results unveil the intrinsic properties of sulfhydryl groups on the gold surface, therefore facilitating the accurate construction of broad nanocomposites with the desired functionalities.

18.
Exp Cell Res ; 425(1): 113537, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36858343

ABSTRACT

Aberrant regulation of ubiquitination is an essential fundamental process in tumors, especially intrahepatic cholangiocarcinoma (iCCA). We reported that OTUB2, an OTU deubiquitinase, is upregulated in iCCA and stabilizes the CTNNB1-ZEB1 axis, resulting in epithelial-mesenchymal transition (EMT) and iCCA metastasis. Mechanistically, OTUB2 promotes CTNNB1 expression by interacting with the E3 ligase TRAF6. OTUB2 inhibits the lysosomal degradation of CTNNB1 by interacting with TRAF6 and thus regulates the progression of iCCA through ZEB1. Clinically, high OTUB2 expression is related to increased ZEB1 expression and activity and reduced overall survival in iCCA patients. Therefore, advanced iCCA patients may benefit from drugs targeting OTUB2 and its pathway.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , TNF Receptor-Associated Factor 6/metabolism , Cholangiocarcinoma/metabolism , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/metabolism , Deubiquitinating Enzymes/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Thiolester Hydrolases/metabolism
19.
Bioorg Chem ; 148: 107467, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772290

ABSTRACT

KRAS-G12C inhibitors has been made significant progress in the treatment of KRAS-G12C mutant cancers, but their clinical application is limited due to the adaptive resistance, motivating development of novel structural inhibitors. Herein, series of coumarin derivatives as KRAS-G12C inhibitors were found through virtual screening and rational structural optimization. Especially, K45 exhibited strong antiproliferative potency on NCI-H23 and NCI-H358 cancer cells harboring KRAS-G12C with the IC50 values of 0.77 µM and 1.50 µM, which was 15 and 11 times as potent as positive drug ARS1620, respectively. Furthermore, K45 reduced the phosphorylation of KRAS downstream effectors ERK and AKT by reducing the active form of KRAS (KRAS GTP) in NCI-H23 cells. In addition, K45 induced cell apoptosis by increasing the expression of anti-apoptotic protein BAD and BAX in NCI-H23 cells. Docking studies displayed that the 3-naphthylmethoxy moiety of K45 extended into the cryptic pocket formed by the residues Gln99 and Val9, which enhanced the interaction with the KRAS-G12C protein. These results indicated that K45 was a potent KRAS-G12C inhibitor worthy of further study.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Coumarins , Drug Screening Assays, Antitumor , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Molecular Structure , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Discovery , Apoptosis/drug effects , Molecular Docking Simulation , Drug Evaluation, Preclinical
20.
J Nanobiotechnology ; 22(1): 25, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38195456

ABSTRACT

Radiotherapy (RT) is one of the important treatment modalities for non-small cell lung cancer (NSCLC). However, the maximum radiation dose that NSCLC patient can receive varies little. Therefore, the exploitation of novel RT sensitization approaches is a critical need for the clinical treatment. RT resistance in NSCLC is linked to tumor microenvironment (TME) hypoxia, cell cycle arrest and associated genetic alterations. Here, we designed a novel method for targeted delivery of quercetin (QT) and CeO2 to enhance RT sensitivity. We loaded QT into CeO2@ZIF-8-HA nanoparticles to prevent its degradation in the circulatory system and successfully delivered QT and CeO2 targeted to NSCLC tumors. Under the protection and targeted delivery of Zeolitic Imidazolate Framework-8 (ZIF-8), the nanocomplexes exhibited excellent catalytic mimetic activity in decomposing H2O2 into O2, thus significantly reversing the hypoxia of TME, while the radiosensitizer QT caused DNA damage directly after RT. In a subcutaneous tumor model, CeO2@ZIF-8-HA overcame radiation resistance and enhanced therapeutic efficacy. This multiple sensitization strategy combining delivery of QT and CeO2@ZIF-8-HA nanozymes opens a promising approach for RT of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/radiotherapy , Hydrogen Peroxide , Tumor Hypoxia , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , DNA Damage , Hypoxia/drug therapy , Quercetin , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL