Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Mol Genet Genomics ; 293(2): 331-342, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29080143

ABSTRACT

Tuber tissue discolorations caused by impact (blackspot bruising) and enzymatic discoloration (ED) after tuber cutting are crucial quality traits of the cultivated potato. To understand the complex genetics of the traits, quantitative trait locus (QTL) analysis using diploid mapping population and diversity array technology (DArT) markers was performed. The phenotypic assessment included the complex evaluation of blackspot bruising susceptibility through two methods: rotating drum (B RD) and falling bolt (B FB) in combination with the evaluation of enzymatic discoloration. Because of observed in-practice relationship between bruising susceptibility and tuber starch content (TSC), analysis of starch content-corrected bruising susceptibility (SCB) was performed. QTLs for bruising were detected on chromosomes I, V with both test methods. The rotating drum method enabled the detection of additional QTLs on chromosomes VIII and XII. Analysis of SCB enabled the identification of the major QTL on chromosome V and two weaker QTLs on chromosomes VIII and XII, independently of starch content. The QTL for bruising detected on chromosome I overlapped with the most significant QTL for tuber starch content. This QTL was not significant for starch content-corrected bruising susceptibility, and the effect of the QTL on chromosome V was enhanced for this trait. The QTL analysis of ED revealed the contribution of seven QTLs for the trait, located on six chromosomes, including these detected for the first time: a major locus on chromosome V and minor QTLs on chromosomes VII and X, which were specific for the trait. The QTL for ED on chromosome VIII was co-localized with the marker for polyphenol oxidase (POT32). The phenotypic correlation between bruising and ED was confirmed in QTL analyses of both traits, and the QTLs detected for these traits overlapped on chromosomes I, V, and VIII. Our results should provide a basis for further studies on candidate genes affecting blackspot bruise susceptibility and enzymatic discoloration.


Subject(s)
Diploidy , Pigmentation/genetics , Plant Tubers/genetics , Quantitative Trait Loci , Solanum tuberosum/genetics , Catechol Oxidase/genetics , Catechol Oxidase/metabolism , Chromosome Mapping , Chromosomes, Plant/genetics , Color , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Tubers/enzymology , Plant Tubers/metabolism , Solanum tuberosum/enzymology , Solanum tuberosum/metabolism , Starch/metabolism
2.
Theor Appl Genet ; 124(2): 397-406, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21987281

ABSTRACT

Solanum ×  michoacanum (Bitter.) Rydb. is a diploid, 1 EBN (Endosperm Balance Number) nothospecies, a relative of potato originating from the area of Morelia in Michoacán State of Mexico that is believed to be a natural hybrid of S. bulbocastanum × S. pinnatisectum. Both parental species and S. michoacanum have been described as sources of resistance to Phytophthora infestans (Mont.) de Bary. The gene for resistance to potato late blight, Rpi-mch1, originating from S. michoacanum was mapped to the chromosome VII of the potato genome. It confers high level of resistance since the plants possessing it showed only small necrotic lesions or no symptoms of the P. infestans infection and we could ascribe over 80% of variance observed in the late blight resistance test of the mapping population to the effect of the closest marker. Its localization on chromosome VII may correspond to the localization of the Rpi1 gene from S. pinnatisectum. When mapping Rpi-mch1, one of the first genetic maps made of 798 Diversity Array Technology (DArT) markers of a plant species from the Solanum genus and the first map of S. michoacanum, a 1EBN potato species was constructed. Particular chromosomes were identified using 48 sequence-specific PCR markers, originating mostly from the Tomato-EXPEN 2000 linkage map (SGN), but also from other sources. Recently, the first DArT linkage map of 2 EBN species Solanum phureja has been published and it shares 197 DArT markers with map obtained in this study, 88% of which are in the concordant positions.


Subject(s)
Chromosomes, Plant/genetics , Disease Resistance/genetics , Genes, Plant/genetics , Hybridization, Genetic , Phytophthora infestans , Plant Diseases/microbiology , Solanum tuberosum/genetics , Chromosome Mapping , Genetic Markers/genetics , Mexico , Polymerase Chain Reaction , Solanum tuberosum/microbiology
3.
BMC Genet ; 13: 11, 2012 Feb 27.
Article in English | MEDLINE | ID: mdl-22369123

ABSTRACT

BACKGROUND: Phytophthora infestans (Mont.) de Bary, the causal organism of late blight, is economically the most important pathogen of potato and resistance against it has been one of the primary goals of potato breeding. Some potentially durable, broad-spectrum resistance genes against this disease have been described recently. However, to obtain durable resistance in potato cultivars more genes are needed to be identified to realize strategies such as gene pyramiding or use of genotype mixtures based on diverse genes. RESULTS: A major resistance gene, Rpi-rzc1, against P. infestans originating from Solanum ruiz-ceballosii was mapped to potato chromosome X using Diversity Array Technology (DArT) and sequence-specific PCR markers. The gene provided high level of resistance in both detached leaflet and tuber slice tests. It was linked, at a distance of 3.4 cM, to violet flower colour most likely controlled by the previously described F locus. The marker-trait association with the closest marker, violet flower colour, explained 87.1% and 85.7% of variance, respectively, for mean detached leaflet and tuber slice resistance. A genetic linkage map that consisted of 1,603 DArT markers and 48 reference sequence-specific PCR markers of known chromosomal localization with a total map length of 1204.8 cM was constructed. CONCLUSIONS: The Rpi-rzc1 gene described here can be used for breeding potatoes resistant to P. infestans and the breeding process can be expedited using the molecular markers and the phenotypic marker, violet flower colour, identified in this study. Knowledge of the chromosomal localization of Rpi-rzc1 can be useful for design of gene pyramids. The genetic linkage map constructed in this study contained 1,149 newly mapped DArT markers and will be a valuable resource for future mapping projects using this technology in the Solanum genus.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Infections/genetics , Phytophthora infestans , Plant Diseases/genetics , Solanum tuberosum/genetics , Solanum/genetics , Breeding , Chromosome Mapping , Flowers/genetics , Genetic Markers , Quantitative Trait Loci
4.
J Appl Genet ; 59(2): 123-132, 2018 May.
Article in English | MEDLINE | ID: mdl-29492845

ABSTRACT

A diploid, potato mapping population consisting of 149 individuals was assessed in three consecutive years for important agronomic and quality traits: tuber shape, regularity of tuber shape, eye depth, mean tuber weight, and tuber flesh color. Analysis of variance showed that the genotype had the largest influence on the phenotypic scores but effect of the genotype × year interactions was also strong. Using this data and an existing genetic map, a quantitative trait loci (QTL) analysis was conducted. From four to seven QTL were detected for each trait except tuber flesh color, which was determined by a major QTL on chromosome III explaining 76.8% of the trait variance. Additionally, a minor QTL for flesh color was localized on chromosome II. For the other traits, significant QTL were detected: for tuber shape on chromosome X, for regularity of tuber shape on chromosome III, for eye depth on chromosome IV, and for tuber weight on chromosome I. Some detected QTL confirmed previous studies, but new ones were also identified.


Subject(s)
Plant Tubers/genetics , Quantitative Trait Loci , Quantitative Trait, Heritable , Solanum tuberosum/genetics , Diploidy , Genetic Linkage , Genotype , Phenotype , Plant Tubers/growth & development , Solanum tuberosum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL