Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Med Chem ; 63(2): 714-746, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31904959

ABSTRACT

The bromodomain and extraterminal (BET) family of bromodomain-containing proteins are important regulators of the epigenome through their ability to recognize N-acetyl lysine (KAc) post-translational modifications on histone tails. These interactions have been implicated in various disease states and, consequently, disruption of BET-KAc binding has emerged as an attractive therapeutic strategy with a number of small molecule inhibitors now under investigation in the clinic. However, until the utility of these advanced candidates is fully assessed by these trials, there remains scope for the discovery of inhibitors from new chemotypes with alternative physicochemical, pharmacokinetic, and pharmacodynamic profiles. Herein, we describe the discovery of a candidate-quality dimethylpyridone benzimidazole compound which originated from the hybridization of a dimethylphenol benzimidazole series, identified using encoded library technology, with an N-methyl pyridone series identified through fragment screening. Optimization via structure- and property-based design led to I-BET469, which possesses favorable oral pharmacokinetic properties, displays activity in vivo, and is projected to have a low human efficacious dose.


Subject(s)
High-Throughput Screening Assays/methods , Proteins/antagonists & inhibitors , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Chemokine CCL2/biosynthesis , Crystallography, X-Ray , Drug Discovery , Drug Evaluation, Preclinical , Drug Synergism , Humans , Interleukin-6/antagonists & inhibitors , Leukocytes/drug effects , Male , Mice , Models, Molecular , Protein Processing, Post-Translational/drug effects , Small Molecule Libraries
2.
Antiviral Res ; 154: 158-165, 2018 06.
Article in English | MEDLINE | ID: mdl-29653131

ABSTRACT

The DNA papillomaviruses infect squamous epithelium and can cause persistent, benign and sometimes malignant hyperproliferative lesions. Effective antiviral drugs to treat human papillomavirus (HPV) infection are lacking and here we investigate the anti-papillomavirus activity of novel epigenetic targeting drugs, BET bromodomain inhibitors. Bromodomain and Extra-Terminal domain (BET) proteins are host proteins which regulate gene transcription, they bind acetylated lysine residues in histones and non-histone proteins via bromodomains, functioning as scaffold proteins in the formation of transcriptional complexes at gene regulatory regions. The BET protein BRD4 has been shown to be involved in the papillomavirus life cycle, as a co-factor for viral E2 and also mediating viral partitioning in some virus types. We set out to study the activity of small molecule BET bromodomain inhibitors in models of papillomavirus infection. Several BET inhibitors reduced HPV11 E1ˆE4 mRNA expression in vitro and topical therapeutic administration of an exemplar compound I-BET762, abrogated CRPV cutaneous wart growth in rabbits, demonstrating translation of anti-viral effects to efficacy in vivo. Additionally I-BET762 markedly reduced viability of HPV16 infected W12 cells compared to non-infected C33A cells. The molecular mechanism for the cytotoxicity to W12 cells is unknown but may be through blocking viral-dependent cell-survival factors. We conclude that these effects, across multiple papillomavirus types and in vivo, highlight the potential to target BET bromodomains to treat HPV infection.


Subject(s)
Benzodiazepines/therapeutic use , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Nuclear Proteins/antagonists & inhibitors , Papillomaviridae/drug effects , Transcription Factors/antagonists & inhibitors , Warts/drug therapy , Acetylation , Animals , Cell Line, Tumor , Cell Survival , Epigenesis, Genetic , Lysine , Male , Papillomaviridae/genetics , Protein Domains , Rabbits , Warts/virology
SELECTION OF CITATIONS
SEARCH DETAIL