Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Gut ; 70(9): 1632-1641, 2021 09.
Article in English | MEDLINE | ID: mdl-33199443

ABSTRACT

OBJECTIVE: Epidermal growth factor receptor (EGFR) inhibition may be effective in biomarker-selected populations of advanced gastro-oesophageal adenocarcinoma (aGEA) patients. Here, we tested the association between outcome and EGFR copy number (CN) in pretreatment tissue and plasma cell-free DNA (cfDNA) of patients enrolled in a randomised first-line phase III clinical trial of chemotherapy or chemotherapy plus the anti-EGFR monoclonal antibody panitumumab in aGEA (NCT00824785). DESIGN: EGFR CN by either fluorescence in situ hybridisation (n=114) or digital-droplet PCR in tissues (n=250) and plasma cfDNAs (n=354) was available for 474 (86%) patients in the intention-to-treat (ITT) population. Tissue and plasma low-pass whole-genome sequencing was used to screen for coamplifications in receptor tyrosine kinases. Interaction between chemotherapy and EGFR inhibitors was modelled in patient-derived organoids (PDOs) from aGEA patients. RESULTS: EGFR amplification in cfDNA correlated with poor survival in the ITT population and similar trends were observed when the analysis was conducted in tissue and plasma by treatment arm. EGFR inhibition in combination with chemotherapy did not correlate with improved survival, even in patients with significant EGFR CN gains. Addition of anti-EGFR inhibitors to the chemotherapy agent epirubicin in PDOs, resulted in a paradoxical increase in viability and accelerated progression through the cell cycle, associated with p21 and cyclin B1 downregulation and cyclin E1 upregulation, selectively in organoids from EGFR-amplified aGEA. CONCLUSION: EGFR CN can be accurately measured in tissue and liquid biopsies and may be used for the selection of aGEA patients. EGFR inhibitors may antagonise the antitumour effect of anthracyclines with important implications for the design of future combinatorial trials.


Subject(s)
Adenocarcinoma/drug therapy , Antibiotics, Antineoplastic/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Epirubicin/therapeutic use , ErbB Receptors/antagonists & inhibitors , Esophageal Neoplasms/drug therapy , Panitumumab/therapeutic use , Stomach Neoplasms/drug therapy , Adenocarcinoma/chemistry , Aged , Antibiotics, Antineoplastic/administration & dosage , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Combined Chemotherapy Protocols , Biomarkers, Tumor/analysis , Epirubicin/administration & dosage , ErbB Receptors/analysis , Esophageal Neoplasms/chemistry , Humans , Male , Middle Aged , Panitumumab/administration & dosage , Stomach Neoplasms/chemistry
2.
Lung Cancer ; 164: 56-68, 2022 02.
Article in English | MEDLINE | ID: mdl-35033939

ABSTRACT

Lung cancer classification has been radically transformed in recent years as genomic profiling has identified multiple novel therapeutic targets including MET exon 14 (METex14) alterations and MET amplification. Utilizing targeted therapies in patients with molecularly-defined NSCLC leads to remarkable objective response rates and improved progression-free survival. However, acquired resistance is inevitable. Several recent phase II trials have confirmed that METex14 NSCLC can be treated effectively with MET kinase inhibitors, such as crizotinib, capmatinib, tepotinib, and savolitinib. However, response rates for many MET TKIs are modest relative to the activity of targeted therapy in other oncogene-driven lung cancers, where ORRs are more consistently greater than 60%. In spite of significant gains in the field of MET inhibition in NSCLC, challenges remain: the landscape of resistance mechanisms to MET TKIs is not yet well characterized, and there may be intrinsic and acquired resistance mechanisms that require further characterization to enable increased MET TKI activity. In this review, we overview MET pathway dysregulation in lung cancer, methods of detection in the clinic, recent clinical trial data, and discuss current mechanisms of TKI resistance, exploring emerging strategies to overcome resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-met/genetics
3.
Pharmgenomics Pers Med ; 14: 1517-1535, 2021.
Article in English | MEDLINE | ID: mdl-34858045

ABSTRACT

The serine/threonine kinase AKT is a critical effector of the phosphoinositide 3-kinase (PI3K) signaling cascade and has a pivotal role in cell growth, proliferation, survival, and metabolism. AKT is one of the most commonly activated pathways in human cancer and dysregulation of AKT-dependent pathways is associated with the development and maintenance of a range of solid tumors. There are multiple small-molecule inhibitors targeting different components of the PI3K/AKT pathway currently at various stages of clinical development, in addition to new combination strategies aiming to boost the therapeutic efficacy of these drugs. Correlative and translational studies have been undertaken in the context of clinical trials investigating AKT inhibitors, however the identification of predictive biomarkers of response and resistance to AKT inhibition remains an unmet need. In this review, we discuss the biological function and activation of AKT, discuss its contribution to tumor development and progression, and review the efficacy and toxicity data from clinical trials, including both AKT inhibitor monotherapy and combination strategies with other agents. We also discuss the promise and challenges associated with the development of AKT inhibitors and associated predictive biomarkers of response and resistance.

SELECTION OF CITATIONS
SEARCH DETAIL