Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Ann Neurol ; 94(4): 696-712, 2023 10.
Article in English | MEDLINE | ID: mdl-37255483

ABSTRACT

OBJECTIVE: Primary mitochondrial diseases (PMDs) are heterogeneous disorders caused by inherited mitochondrial dysfunction. Classically defined neuropathologically as subacute necrotizing encephalomyelopathy, Leigh syndrome spectrum (LSS) is the most frequent manifestation of PMD in children, but may also present in adults. A major challenge for accurate diagnosis of LSS in the genomic medicine era is establishing gene-disease relationships (GDRs) for this syndrome with >100 monogenic causes across both nuclear and mitochondrial genomes. METHODS: The Clinical Genome Resource (ClinGen) Mitochondrial Disease Gene Curation Expert Panel (GCEP), comprising 40 international PMD experts, met monthly for 4 years to review GDRs for LSS. The GCEP standardized gene curation for LSS by refining the phenotypic definition, modifying the ClinGen Gene-Disease Clinical Validity Curation Framework to improve interpretation for LSS, and establishing a scoring rubric for LSS. RESULTS: The GDR with LSS across the nuclear and mitochondrial genomes was classified as definitive for 31 of 114 GDRs curated (27%), moderate for 38 (33%), limited for 43 (38%), and disputed for 2 (2%). Ninety genes were associated with autosomal recessive inheritance, 16 were maternally inherited, 5 were autosomal dominant, and 3 were X-linked. INTERPRETATION: GDRs for LSS were established for genes across both nuclear and mitochondrial genomes. Establishing these GDRs will allow accurate variant interpretation, expedite genetic diagnosis of LSS, and facilitate precision medicine, multisystem organ surveillance, recurrence risk counseling, reproductive choice, natural history studies, and determination of eligibility for interventional clinical trials. ANN NEUROL 2023;94:696-712.


Subject(s)
Leigh Disease , Mitochondrial Diseases , Child , Humans , Leigh Disease/diagnosis , Leigh Disease/genetics , Mitochondria
2.
Geophys Res Lett ; 49(11): e2022GL098078, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35865010

ABSTRACT

We present simultaneous, independent measurements of the atmospheric semidiurnal lunar tide in neutral winds and plasma velocities from NASA's Ionospheric Connection Explorer, and in atomic oxygen 135.6 nm airglow measured by the Global-scale Observations of the Limb and Disk. Westward tidal winds near 115 km at the magnetic equator occur during part of the upward phase of the in-situ plasma drift. Vertical motions associated with the field-aligned plasma velocity occur away from the magnetic equator. The morphology of the lunar tide, and the phasing between the airglow and plasma velocities are consistent with E × B drift as a mechanism for linking neutral wind and plasma perturbations. This work provides the first observational quantification of global-scale E- and F-region coupling through E × B and field-aligned vertical drifts.

3.
J Neurogenet ; 35(2): 74-83, 2021.
Article in English | MEDLINE | ID: mdl-33970744

ABSTRACT

KCTD7 is a member of the potassium channel tetramerization domain-containing protein family and has been associated with progressive myoclonic epilepsy (PME), characterized by myoclonus, epilepsy, and neurological deterioration. Here we report four affected individuals from two unrelated families in which we identified KCTD7 compound heterozygous single nucleotide variants through exome sequencing. RNAseq was used to detect a non-annotated splicing junction created by a synonymous variant in the second family. Whole-cell patch-clamp analysis of neuroblastoma cells overexpressing the patients' variant alleles demonstrated aberrant potassium regulation. While all four patients experienced many of the common clinical features of PME, they also showed variable phenotypes not previously reported, including dysautonomia, brain pathology findings including a significantly reduced thalamus, and the lack of myoclonic seizures. To gain further insight into the pathogenesis of the disorder, zinc finger nucleases were used to generate kctd7 knockout zebrafish. Kctd7 homozygous mutants showed global dysregulation of gene expression and increased transcription of c-fos, which has previously been correlated with seizure activity in animal models. Together these findings expand the known phenotypic spectrum of KCTD7-associated PME, report a new animal model for future studies, and contribute valuable insights into the disease.


Subject(s)
Myoclonic Epilepsies, Progressive/genetics , Potassium Channels/genetics , Animals , Child , Child, Preschool , Female , Humans , Infant , Male , Mutation , Myoclonic Epilepsies, Progressive/physiopathology , Pedigree , Phenotype , Zebrafish
4.
Geophys Res Lett ; 48(15)2021 Aug.
Article in English | MEDLINE | ID: mdl-34690382

ABSTRACT

We report for the first time the day-to-day variation of the longitudinal structure in height of the F2 layer (hmF2) in the equatorial ionosphere using multi-satellite observations of electron density profiles by the Constellation Observing System for Meteorology, Ionosphere and Climate-2 (COSMIC-2). These observations reveal a ~3-day modulation of the hmF2 wavenumber-4 structure viewed in a fixed local time frame during January 30-February 14, 2021. Simultaneously, ~3-day planetary wave activity is discerned from zonal wind observations at ~100 km by the Ionospheric Connection Explorer (ICON) Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI). This signature is not observed at ~180-250 km altitudes, suggesting the dissipation of this wave below the F-region. We propose that the 3-day variation identified in h mF2 is likely caused by the planetary wave-tide interaction through the E-region dynamo.

5.
Am J Hum Genet ; 99(2): 511-20, 2016 Aug 04.
Article in English | MEDLINE | ID: mdl-27453579

ABSTRACT

Primary microcephaly is a neurodevelopmental disorder that is caused by a reduction in brain size as a result of defects in the proliferation of neural progenitor cells during development. Mutations in genes encoding proteins that localize to the mitotic spindle and centrosomes have been implicated in the pathogenicity of primary microcephaly. In contrast, the contractile ring and midbody required for cytokinesis, the final stage of mitosis, have not previously been implicated by human genetics in the molecular mechanisms of this phenotype. Citron kinase (CIT) is a multi-domain protein that localizes to the cleavage furrow and midbody of mitotic cells, where it is required for the completion of cytokinesis. Rodent models of Cit deficiency highlighted the role of this gene in neurogenesis and microcephaly over a decade ago. Here, we identify recessively inherited pathogenic variants in CIT as the genetic basis of severe microcephaly and neonatal death. We present postmortem data showing that CIT is critical to building a normally sized human brain. Consistent with cytokinesis defects attributed to CIT, multinucleated neurons were observed throughout the cerebral cortex and cerebellum of an affected proband, expanding our understanding of mechanisms attributed to primary microcephaly.


Subject(s)
Genes, Recessive/genetics , Intracellular Signaling Peptides and Proteins/genetics , Microcephaly/genetics , Neurons/pathology , Protein Serine-Threonine Kinases/genetics , Cerebellum/pathology , Child , Female , Humans , Infant , Infant, Newborn , Male , Microcephaly/pathology , Neocortex/pathology , RNA Splicing/genetics
6.
Cereb Cortex ; 28(7): 2479-2481, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29746611

ABSTRACT

In this issue of Cerebral Cortex, Cipriani et al. are following up on the recent report of Sorrels et al. to add novel immunohistological observations indicating that, unlike rodents, adult and aging humans do not acquire new neurons in the hippocampus. The common finding emerging from these 2 different, but almost simultaneous studies is highly significant because the dentate gyrus of the hippocampus was, until recently, considered as the only structure in the human brain that may continue neurogenesis throughout the full life span.


Subject(s)
Alzheimer Disease , Adult , Dentate Gyrus , Fetus , Hippocampus , Humans , Neurogenesis , Neurons
7.
Appl Opt ; 58(13): 3613-3619, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31044863

ABSTRACT

The mean fringe phase measured by Doppler asymmetric spatial heterodyne spectroscopy is a direct measure of atmospheric wind. The uncertainty in measuring the mean phase is investigated and found to be accurately predicted by an analytic formula for moderate and high signal-to-noise ratios. At lower signal-to-noise ratios, numeric issues in the phase calculation result in non-Gaussian distributions of mean phase. Analysis techniques are described to mitigate these numeric issues to the extent possible.

8.
Brain ; 138(Pt 8): 2173-90, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26070982

ABSTRACT

We describe a novel nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum among 30 children (ages 1.0 to 28 years) from diverse Amish demes. Children with nephrocerebellar syndrome had progressive microcephaly, visual impairment, stagnant psychomotor development, abnormal extrapyramidal movements and nephrosis. Fourteen died between ages 2.7 and 28 years, typically from renal failure. Post-mortem studies revealed (i) micrencephaly without polymicrogyria or heterotopia; (ii) atrophic cerebellar hemispheres with stunted folia, profound granule cell depletion, Bergmann gliosis, and signs of Purkinje cell deafferentation; (iii) selective striatal cholinergic interneuron loss; and (iv) optic atrophy with delamination of the lateral geniculate nuclei. Renal tissue showed focal and segmental glomerulosclerosis and extensive effacement and microvillus transformation of podocyte foot processes. Nephrocerebellar syndrome mapped to 700 kb on chromosome 15, which contained a single novel homozygous frameshift variant (WDR73 c.888delT; p.Phe296Leufs*26). WDR73 protein is expressed in human cerebral cortex, hippocampus, and cultured embryonic kidney cells. It is concentrated at mitotic microtubules and interacts with α-, ß-, and γ-tubulin, heat shock proteins 70 and 90 (HSP-70; HSP-90), and the carbamoyl phosphate synthetase 2/aspartate transcarbamylase/dihydroorotase multi-enzyme complex. Recombinant WDR73 p.Phe296Leufs*26 and p.Arg256Profs*18 proteins are truncated, unstable, and show increased interaction with α- and ß-tubulin and HSP-70/HSP-90. Fibroblasts from patients homozygous for WDR73 p.Phe296Leufs*26 proliferate poorly in primary culture and senesce early. Our data suggest that in humans, WDR73 interacts with mitotic microtubules to regulate cell cycle progression, proliferation and survival in brain and kidney. We extend the Galloway-Mowat syndrome spectrum with the first description of diencephalic and striatal neuropathology.


Subject(s)
Brain/metabolism , Cell Cycle/genetics , Hernia, Hiatal/genetics , Microcephaly/genetics , Mutation/genetics , Nephrosis/genetics , Proteins/metabolism , Adolescent , Adult , Child , Child, Preschool , Female , Glomerulosclerosis, Focal Segmental/genetics , Glomerulosclerosis, Focal Segmental/metabolism , Homozygote , Humans , Infant , Male , Proteins/genetics , Tubulin/genetics , Young Adult
9.
Proc Natl Acad Sci U S A ; 110(17): 7014-9, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23572577

ABSTRACT

Receptor-mediated endocytosis, involving megalin and cubilin, mediates renal proximal-tubular reabsorption and is decreased in Dent disease because of mutations of the chloride/proton antiporter, chloride channel-5 (CLC-5), resulting in low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, and renal failure. To facilitate studies of receptor-mediated endocytosis and the role of CLC-5, we established conditionally immortalized proximal-tubular epithelial cell lines (ciPTECs) from three patients with CLC-5 mutations (30:insH, R637X, and del132-241) and a normal male. Confocal microscopy using the tight junction marker zona occludens-1 (ZO-1) and end-binding protein-1 (EB-1), which is specific for the plus end of microtubules demonstrated that the ciPTECs polarized. Receptor-mediated endocytic uptake of fluorescent albumin and transferrin in 30:insH and R637X ciPTECs was significantly decreased, compared with normal ciPTECs, and could be further reduced by competition with 10-fold excess of unlabeled albumin and transferrin, whereas in the del132-241 ciPTEC, receptor-mediated endocytic uptake was abolished. Investigation of endosomal acidification by live-cell imaging of pHluorin-VAMP2 (vesicle-associated membrane protein-2), a pH-sensitive-GFP construct, revealed that the endosomal pH in normal and 30:insH ciPTECs was similar, whereas in del132-241 and R637X ciPTECs, it was significantly more alkaline, indicating defective acidification in these ciPTECs. The addition of bafilomycin-A1, a V-ATPase inhibitor, raised the pH significantly in all ciPTECs, demonstrating that the differences in acidification were not due to alterations in the V-ATPase, but instead to abnormalities of CLC-5. Thus, our studies, which have established human Dent disease ciPTECs that will facilitate studies of mechanisms in renal reabsorption, demonstrate that Dent disease-causing CLC-5 mutations have differing effects on endosomal acidification and receptor-mediated endocytosis that may not be coupled.


Subject(s)
Dent Disease/physiopathology , Endocytosis/physiology , Endosomes/chemistry , Epithelial Cells/physiology , Kidney Tubules, Proximal/cytology , Cell Line , Chloride Channels/genetics , Chloride Channels/metabolism , Dent Disease/genetics , Green Fluorescent Proteins/metabolism , Humans , Hydrogen-Ion Concentration , Microscopy, Confocal , Mutation/genetics , Vesicle-Associated Membrane Protein 2/metabolism
10.
Hum Mol Genet ; 21(12): 2768-78, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22422767

ABSTRACT

The calcium-sensing receptor (CaSR) is a G-protein-coupled receptor that has an extracellular bilobed venus flytrap domain (VFTD) predicted to contain five calcium (Ca(2+))-binding sites. To elucidate the structure-function relationships of the VFTD, we investigated 294 unrelated probands with familial hypocalciuric hypercalcaemia (FHH), neonatal severe primary hyperparathyroidism (NSHPT) or autosomal dominant hypocalcaemic hypercalciuria (ADHH) for CaSR mutations and performed in vitro functional expression studies and three-dimensional modelling of mutations involving the VFTD. A total of 70 different CaSR mutations were identified: 35 in FHH, 10 in NSHPT and 25 in ADHH patients. Furthermore, a CaSR variant (Glu250Lys) was identified in FHH and ADHH probands and demonstrated to represent a functionally neutral polymorphism. NSHPT was associated with a large proportion of truncating CaSR mutations that occurred in the homozygous or compound heterozygous state. Thirty-four VFTD missense mutations were identified, and 18 mutations were located within 10 Å of one or more of the predicted Ca(2+)-binding sites, particularly at the VFTD cleft, which is the principal site of Ca(2+) binding. Mutations of residues 173 and 221, which are located at the entrance to the VFTD cleft binding site, were associated with both receptor activation (Leu173Phe and Pro221Leu) and inactivation (Leu173Pro and Pro221Gln), thereby highlighting the importance of these residues for entry and binding of Ca(2+) by the CaSR. Thus, these studies of disease-associated CaSR mutations have further elucidated the role of the VFTD cleft region in Ca(2+) binding and the function of the CaSR.


Subject(s)
Hypercalcemia/genetics , Hypocalcemia/genetics , Mutation , Receptors, Calcium-Sensing/genetics , Binding Sites/genetics , Calcium/chemistry , Calcium/metabolism , Genotype , HEK293 Cells , Humans , Hyperparathyroidism , Infant, Newborn , Models, Molecular , Mutation Rate , Mutation, Missense , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, Calcium-Sensing/chemistry , Receptors, Calcium-Sensing/metabolism
11.
Appl Opt ; 53(4): 666-73, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24514183

ABSTRACT

The Earth's thermosphere plays a critical role in driving electrodynamic processes in the ionosphere and in transferring solar energy to the atmosphere, yet measurements of thermospheric state parameters, such as wind and temperature, are sparse. One of the most popular techniques for measuring these parameters is to use a Fabry-Perot interferometer to monitor the Doppler width and breadth of naturally occurring airglow emissions in the thermosphere. In this work, we present a technique for estimating upper-atmospheric winds and temperatures from images of Fabry-Perot fringes captured by a CCD detector. We estimate instrument parameters from fringe patterns of a frequency-stabilized laser, and we use these parameters to estimate winds and temperatures from airglow fringe patterns. A unique feature of this technique is the model used for the laser and airglow fringe patterns, which fits all fringes simultaneously and attempts to model the effects of optical defects. This technique yields accurate estimates for winds, temperatures, and the associated uncertainties in these parameters, as we show with a Monte Carlo simulation.

13.
Space Sci Rev ; 219(3): 27, 2023.
Article in English | MEDLINE | ID: mdl-37038438

ABSTRACT

The design, principles of operation, calibration, and data analysis approaches of the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) on the NASA Ionospheric Connection (ICON) satellite have been documented prior to the ICON launch. Here we update and expand on the MIGHTI wind data analysis and discuss the on-orbit instrument performance. In particular, we show typical raw data and we describe key processing steps, including the correction of a "signal-intensity dependent phase shift," which is necessitated by unexpected detector behavior. We describe a new zero-wind calibration approach that is preferred over the originally planned approach due to its higher precision. Similar to the original approach, the new approach is independent of any a priori data. A detailed update on the wind uncertainties is provided and compared to the mission requirements, showing that MIGHTI has met the ICON mission requirements. While MIGHTI observations are not required to produce absolute airglow brightness profiles, we describe a relative brightness profile product, which is included in the published data. We briefly review the spatial resolution of the MIGHTI wind data in addition to the data coverage and data gaps that occurred during the nominal mission. Finally, we include comparisons of the MIGHTI wind data with ground-based Fabry-Perot interferometer observations and meteor radar observations, updating previous studies with more recent data, again showing good agreement. The data processing steps covered in this work and all the derived wind data correspond to the MIGHTI data release Version 5 (v05).

14.
Space Sci Rev ; 219(5): 41, 2023.
Article in English | MEDLINE | ID: mdl-37469439

ABSTRACT

The two-year prime mission of the NASA Ionospheric Connection Explorer (ICON) is complete. The baseline operational and scientific objectives have been met and exceeded, as detailed in this report. In October of 2019, ICON was launched into an orbit that provides its instruments the capability to deliver near-continuous measurements of the densest plasma in Earth's space environment. Through collection of a key set of in-situ and remote sensing measurements that are, by virtue of a detailed mission design, uniquely synergistic, ICON enables completely new investigations of the mechanisms that control the behavior of the ionosphere-thermosphere system under both geomagnetically quiet and active conditions. In a two-year period that included a deep solar minimum, ICON has elucidated a number of remarkable effects in the ionosphere attributable to energetic inputs from the lower and middle atmosphere, and shown how these are transmitted from the edge of space to the peak of plasma density above. The observatory operated in a period of low activity for 2 years and then for a year with increasing solar activity, observing the changing balance of the impacts of lower and upper atmospheric drivers on the ionosphere.

15.
Nat Commun ; 13(1): 2331, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484145

ABSTRACT

In the developing mouse forebrain, temporally distinct waves of oligodendrocyte progenitor cells (OPCs) arise from different germinal zones and eventually populate either dorsal or ventral regions, where they present as transcriptionally and functionally equivalent cells. Despite that, developmental heterogeneity influences adult OPC responses upon demyelination. Here we show that accumulation of DNA damage due to ablation of citron-kinase or cisplatin treatment cell-autonomously disrupts OPC fate, resulting in cell death and senescence in the dorsal and ventral subsets, respectively. Such alternative fates are associated with distinct developmental origins of OPCs, and with a different activation of NRF2-mediated anti-oxidant responses. These data indicate that, upon injury, dorsal and ventral OPC subsets show functional and molecular diversity that can make them differentially vulnerable to pathological conditions associated with DNA damage.


Subject(s)
Oligodendrocyte Precursor Cells , Animals , DNA Damage , Mice , Oligodendrocyte Precursor Cells/physiology , Oligodendroglia/metabolism , Prosencephalon
16.
J Geophys Res Space Phys ; 127(6): e2022JA030527, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35864906

ABSTRACT

Following the 2022 Tonga Volcano eruption, dramatic suppression and deformation of the equatorial ionization anomaly (EIA) crests occurred in the American sector ∼14,000 km away from the epicenter. The EIA crests variations and associated ionosphere-thermosphere disturbances were investigated using Global Navigation Satellite System total electron content data, Global-scale Observations of the Limb and Disk ultraviolet images, Ionospheric Connection Explorer wind data, and ionosonde observations. The main results are as follows: (a) Following the eastward passage of expected eruption-induced atmospheric disturbances, daytime EIA crests, especially the southern one, showed severe suppression of more than 10 TEC Unit and collapsed equatorward over 10° latitudes, forming a single band of enhanced density near the geomagnetic equator around 14-17 UT, (b) Evening EIA crests experienced a drastic deformation around 22 UT, forming a unique X-pattern in a limited longitudinal area between 20 and 40°W. (c) Thermospheric horizontal winds, especially the zonal winds, showed long-lasting quasi-periodic fluctuations between ±200 m/s for 7-8 hr after the passage of volcano-induced Lamb waves. The EIA suppression and X-pattern merging was consistent with a westward equatorial zonal dynamo electric field induced by the strong zonal wind oscillation with a westward reversal.

17.
J Geophys Res Space Phys ; 126(2)2021 Feb.
Article in English | MEDLINE | ID: mdl-33828935

ABSTRACT

Observations of the nighttime thermospheric wind from two ground-based Fabry-Perot Interferometers are compared to the level 2.1 and 2.2 data products from the Michelson Interferometer Global High-resolution Thermospheric Imaging (MIGHTI) onboard National Aeronautics and Space Administration's Ionospheric Connection Explorer to assess and validate the methodology used to generate measurements of neutral thermospheric winds observed by MIGHTI. We find generally good agreement between observations approximately coincident in space and time with mean differences less than 11 m/s in magnitude and standard deviations of about 20-35 m/s. These results indicate that the independent calculations of the zero-wind reference used by the different instruments do not contain strong systematic or physical biases, even though the observations were acquired during solar minimum conditions when the measured airglow intensity is weak. We argue that the slight differences in the estimated wind quantities between the two instrument types can be attributed to gradients in the airglow and thermospheric wind fields and the differing viewing geometries used by the instruments.

18.
J Geophys Res Space Phys ; 126(11)2021 Nov.
Article in English | MEDLINE | ID: mdl-35070616

ABSTRACT

A quasi-2-day wave (Q2DW) event during January-February, 2020, is investigated in terms of its propagation from 96 to 250 km as a function of latitude (10°S to 30°N), its nonlinear interactions with migrating tides to produce 16 and 9.6-h secondary waves (SWs), and the plasma drift and density perturbations that it produces in the topside F-region (590-607 km) between magnetic latitudes 18°S and 18°N. This is accomplished through analysis of coincident Ionospheric Connections Explorer (ICON) measurements of neutral winds, plasma drifts and ion densities, and wind measurements from four low-latitude (±15°) specular meteor radars (SMRs). The Q2DW westward-propagating components that existed during this period consist of zonal wavenumbers s = 2 and s = 3, that is, Q2DW+2 and Q2DW+3 (e.g., He, Chau et al., 2021, https://doi.org/10.1029/93jd00380). SWs in the ICON measurements are inferred from Q2DW+2 and Q2DW+3 characteristics derived from traditional longitude-UT fits that potentially contain aliasing contributions from SWs ("apparent" Q2DWs), from fits to space-based zonal wavenumbers that each reflect the aggregate signature of either Q2DW+2 or Q2DW+3 and its SWs combined ("effective" Q2DWs), and based on information contained in published numerical simulations. The total Q2DW ionospheric responses consists of F-region field-aligned and meridional drifts of order ±25 ms-1 and ±5-7 ms-1, respectively, and total ion density perturbations of order (±10%-25%). It is shown that the SWs can sometimes make substantial contributions to the Q2DW winds, drifts, and plasma densities.

19.
Nat Geosci ; 14: 893-898, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35003329

ABSTRACT

Earth's equatorial ionosphere exhibits substantial and unpredictable day-to-day variations in density and morphology. This presents challenges in preparing for adverse impacts on geopositioning systems and radio communications even 24 hours in advance. The variability is now theoretically understood as a manifestation of thermospheric weather, where winds in the upper atmosphere respond strongly to a spectrum of atmospheric waves that propagate into space from the lower and middle atmosphere. First-principles simulations predict related, large changes in the ionosphere, primarily through modification of wind-driven electromotive forces: the wind-driven dynamo. Here we show the first direct evidence of the action of a wind dynamo in space, using the coordinated, space-based observations of winds and plasma motion made by the National Aeronautics and Space Administration Ionospheric Connection Explorer. A clear relationship is found between vertical plasma velocities measured at the magnetic equator near 600 km and the thermospheric winds much farther below. Significant correlations are found between the plasma and wind velocities during several successive precession cycles of the Ionospheric Connection Explorer's orbit. Prediction of thermospheric winds in the 100-150 km altitude range emerges as the key to improved prediction of Earth's plasma environment.

20.
J Geophys Res Space Phys ; 126(6)2021 Jun.
Article in English | MEDLINE | ID: mdl-34650898

ABSTRACT

Coincident Ionospheric Connections Explorer (ICON) measurements of neutral winds, plasma drifts and total ion densities (:=Ne, electron density) are analyzed during January 1-21, 2020 to reveal the relationship between neutral winds and ionospheric variability on a day-to-day basis. Atmosphere-ionosphere (A-I) connectivity inevitably involves a spectrum of planetary waves (PWs), tides and secondary waves due to wave-wave nonlinear interactions. To provide a definitive attribution of dynamical origins, the current study focuses on a time interval when the longitudinal wave-4 component of the E-region winds is dominated by the eastward-propagating diurnal tide with zonal wavenumber s = -3 (DE3). DE3 is identified in winds and ionospheric parameters through its characteristic dependence on local solar time and longitude as ICON's orbit precesses. Superimposed on this trend are large variations in low-latitude DE3 wave-4 zonal winds (±40 ms-1) and topside F-region equatorial vertical drifts at periods consistent with 2-days and 6-days PWs, and a ~3-day ultra-fast Kelvin wave (UFKW), coexisting during this time interval; the DE3 winds, dynamo electric fields, and drifts are modulated by these waves. Wave-4 variability in Ne is of order 25%-35%, but the origins are more complex, likely additionally reflecting transport by ~20-25 ms-1 wave-4 in-situ winds containing strong signatures of DE3 interactions with ambient diurnal Sun-synchronous winds and ion drag. These results are the first to show a direct link between day-to-day wave-4 variability in contemporaneously measured E-region neutral winds and F-region ionospheric drifts and electron densities.

SELECTION OF CITATIONS
SEARCH DETAIL