Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Chem Phys ; 153(12): 124903, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-33003752

ABSTRACT

We report a study of chromophore-catalyst assemblies composed of light harvesting hexabenzocoronene (HBC) chromophores axially coordinated to two cobaloxime complexes. The chromophore-catalyst assemblies were prepared using bottom-up synthetic methodology and characterized using solid-state NMR, IR, and x-ray absorption spectroscopy. Detailed steady-state and time-resolved laser spectroscopy was utilized to identify the photophysical properties of the assemblies, coupled with time-dependent DFT calculations to characterize the relevant excited states. The HBC chromophores tend to assemble into aggregates that exhibit high exciton diffusion length (D = 18.5 molecule2/ps), indicating that over 50 chromophores can be sampled within their excited state lifetime. We find that the axial coordination of cobaloximes leads to a significant reduction in the excited state lifetime of the HBC moiety, and this finding was discussed in terms of possible electron and energy transfer pathways. By comparing the experimental quenching rate constant (1.0 × 109 s-1) with the rate constant estimates for Marcus electron transfer (5.7 × 108 s-1) and Förster/Dexter energy transfers (8.1 × 106 s-1 and 1.0 × 1010 s-1), we conclude that both Dexter energy and Marcus electron transfer process are possible deactivation pathways in CoQD-A. No charge transfer or energy transfer intermediate was detected in transient absorption spectroscopy, indicating fast, subpicosecond return to the ground state. These results provide important insights into the factors that control the photophysical properties of photocatalytic chromophore-catalyst assemblies.

2.
J Phys Chem A ; 120(37): 7294-300, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27565198

ABSTRACT

The triplet excited-state formation efficiency in a flavin derivative was increased by the introduction of iodine into the molecular framework. The transient absorption measurements showed that the intersystem crossing rate was 1.1 × 10(10) s(-1), significantly faster than in the parent flavin compound. Furthermore, the photocatalytic efficiency of iodoflavin was evaluated using the oxidation of benzyl alcohol as a model reaction. The benzaldehyde product yields were higher when iodoflavin was used as a photocatalyst, showing that the increased triplet yield directly translates into improved photocatalysis. The iodoflavin catalyst also allowed the use of higher substrate concentrations (since the undesired electron transfer from singlet excited state was minimized), which is expected to improve the practical aspects of photocatalysis by flavins.


Subject(s)
Alcohols/chemistry , Flavins/chemistry , Benzaldehydes/chemistry , Catalysis , Chemistry Techniques, Synthetic , Electron Transport , Oxidation-Reduction , Spectrophotometry, Ultraviolet
3.
J Phys Chem Lett ; 12(9): 2306-2311, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33651629

ABSTRACT

Selective reduction of CO2 to formate represents an ongoing challenge in photoelectrocatalysis. To provide mechanistic insights, we investigate the kinetics of hydride transfer (HT) from a series of metal-free hydride donors to CO2. The observed dependence of experimental and calculated HT barriers on the thermodynamic driving force was modeled by using the Marcus hydride transfer formalism to obtain the insights into the effect of reorganization energies on the reaction kinetics. Our results indicate that even if the most ideal hydride donor were discovered, the HT to CO2 would exhibit sluggish kinetics (<100 turnovers per second at -0.1 eV driving force), indicating that the conventional HT may not be an appropriate mechanism for solar conversion of CO2 to formate. We propose that the conventional HT mechanism should not be considered for CO2 reduction catalysis and argue that the orthogonal HT mechanism, previously proposed to address thermodynamic limitations of this reaction, may also lead to lower kinetic barriers for CO2 reduction to formate.

4.
J Phys Chem Lett ; 11(1): 210-216, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31842548

ABSTRACT

Exciton size and dynamics were studied in assemblies of two well-defined graphene quantum dots of varying size: hexabenzocoronene (HBC), where the aromatic core consists of 42 C atoms, and carbon quantum dot (CQD) with 78 C atoms. The synthesis of HBC and CQD were achieved using bottom-up chemical methods, while their assembly was studied using steady-state UV/vis spectroscopy, X-ray scattering, and electron microscopy. While HBC forms long ordered fibers, CQD was found not to assemble well. The exciton size and dynamics were studied using time-resolved laser spectroscopy. At early times (∼100 fs), the exciton was found to delocalize over ∼1-2 molecular units in both assemblies, which reflects the confined nature of excitons in carbon-based materials and is consistent with the calculated value of ∼2 molecular units. Exciton-exciton annihilation measurements provided the exciton diffusion lengths of 16 and 3 nm for HBC and CQD, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL