Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
J Biol Chem ; 296: 100592, 2021.
Article in English | MEDLINE | ID: mdl-33775696

ABSTRACT

We identified a genetic variant, an 8-residue appendage, of the α345 hexamer of collagen IV present in patients with glomerular basement membrane diseases, Goodpasture's disease and Alport syndrome, and determined the long-awaited crystal structure of the hexamer. We sought to elucidate how variants cause glomerular basement membrane disease by exploring the mechanism of the hexamer assembly. Chloride ions induced in vitro hexamer assembly in a composition-specific manner in the presence of equimolar concentrations of α3, α4, and α5 NC1 monomers. Chloride ions, together with sulfilimine crosslinks, stabilized the assembled hexamer. Furthermore, the chloride ion-dependent assembly revealed the conformational plasticity of the loop-crevice-loop bioactive sites, a critical property underlying bioactivity and pathogenesis. We explored the native mechanism by expressing recombinant α345 miniprotomers in the cell culture and characterizing the expressed proteins. Our findings revealed NC1-directed trimerization, forming protomers inside the cell; hexamerization, forming scaffolds outside the cell; and a Cl gradient-signaled hexamerization. This assembly detail, along with a crystal structure, provides a framework for understanding hexamer dysfunction. Restoration of the native conformation of bioactive sites and α345 hexamer replacement are prospective approaches to therapeutic intervention.


Subject(s)
Anti-Glomerular Basement Membrane Disease/genetics , Collagen Type IV/chemistry , Collagen Type IV/metabolism , Mutation , Nephritis, Hereditary/genetics , Protein Multimerization , Cell Line , Collagen Type IV/genetics , Protein Structure, Quaternary
2.
Nat Chem Biol ; 12(7): 531-8, 2016 07.
Article in English | MEDLINE | ID: mdl-27214401

ABSTRACT

The KDM5 family of histone demethylases catalyzes the demethylation of histone H3 on lysine 4 (H3K4) and is required for the survival of drug-tolerant persister cancer cells (DTPs). Here we report the discovery and characterization of the specific KDM5 inhibitor CPI-455. The crystal structure of KDM5A revealed the mechanism of inhibition of CPI-455 as well as the topological arrangements of protein domains that influence substrate binding. CPI-455 mediated KDM5 inhibition, elevated global levels of H3K4 trimethylation (H3K4me3) and decreased the number of DTPs in multiple cancer cell line models treated with standard chemotherapy or targeted agents. These findings show that pretreatment of cancer cells with a KDM5-specific inhibitor results in the ablation of a subpopulation of cancer cells that can serve as the founders for therapeutic relapse.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Enzyme Inhibitors/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Retinoblastoma-Binding Protein 2/antagonists & inhibitors , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Retinoblastoma-Binding Protein 2/metabolism , Structure-Activity Relationship
3.
J Biol Chem ; 291(25): 13014-27, 2016 Jun 17.
Article in English | MEDLINE | ID: mdl-27056325

ABSTRACT

Covalent modification of histones is a fundamental mechanism of regulated gene expression in eukaryotes, and interpretation of histone modifications is an essential feature of epigenetic control. Bromodomains are specialized binding modules that interact with acetylated histones, linking chromatin recognition to gene transcription. Because of their ability to function in a domain-specific fashion, selective disruption of bromodomain:acetylated histone interactions with chemical probes serves as a powerful means for understanding biological processes regulated by these chromatin adaptors. Here we describe the discovery and characterization of potent and selective small molecule inhibitors for the bromodomains of CREBBP/EP300 that engage their target in cellular assays. We use these tools to demonstrate a critical role for CREBBP/EP300 bromodomains in regulatory T cell biology. Because regulatory T cell recruitment to tumors is a major mechanism of immune evasion by cancer cells, our data highlight the importance of CREBBP/EP300 bromodomain inhibition as a novel, small molecule-based approach for cancer immunotherapy.


Subject(s)
CREB-Binding Protein/antagonists & inhibitors , E1A-Associated p300 Protein/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , T-Lymphocytes, Regulatory/drug effects , Acetylation/drug effects , CREB-Binding Protein/chemistry , CREB-Binding Protein/metabolism , Cell Differentiation/drug effects , Cell Line , Cells, Cultured , E1A-Associated p300 Protein/chemistry , E1A-Associated p300 Protein/metabolism , Forkhead Transcription Factors/metabolism , Histones/metabolism , Humans , Molecular Docking Simulation , Protein Structure, Tertiary/drug effects , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , Transcriptome/drug effects
4.
Bioorg Med Chem Lett ; 27(13): 2974-2981, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28512031

ABSTRACT

A high-throughput screening (HTS) of the Genentech/Roche library identified a novel, uncharged scaffold as a KDM5A inhibitor. Lacking insight into the binding mode, initial attempts to improve inhibitor potency failed to improve potency, and synthesis of analogs was further hampered by the presence of a C-C bond between the pyrrolidine and pyridine. Replacing this with a C-N bond significantly simplified synthesis, yielding pyrazole analog 35, of which we obtained a co-crystal structure with KDM5A. Using structure-based design approach, we identified 50 with improved biochemical, cell potency and reduced MW and lower lipophilicity (LogD) compared with the original hit. Furthermore, 50 showed lower clearance than 9 in mice. In combination with its remarkably low plasma protein binding (PPB) in mice (40%), oral dosing of 50 at 5mg/kg resulted in unbound Cmax ∼2-fold of its cell potency (PC9 H3K4Me3 0.96µM), meeting our criteria for an in vivo tool compound from a new scaffold.


Subject(s)
Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Pyrazoles/pharmacology , Retinoblastoma-Binding Protein 2/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Humans , Mice , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Docking Simulation , Molecular Structure , Pyrazoles/administration & dosage , Pyrazoles/chemistry , Rats , Retinoblastoma-Binding Protein 2/metabolism , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 26(16): 4036-41, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27406798

ABSTRACT

Starting with a lead [1,5-a]pyrimidin-7(4H)-one-containing molecule (1), we generated potent, selective and orally bioavailable KDM5 inhibitors. Using structure- and property-based approaches, we designed 48 with improved cell potency (PC9 H3K4Me3 EC50=0.34µM). Furthermore, 48 maintained suitable physiochemical properties and displayed an excellent pharmacokinetic (PK) profile in mice. When dosed orally in mice at 50mg/kg twice a day (BID), 48 showed an unbound maximal plasma concentration (Cmax) >15-fold over its cell EC50, thereby providing a robust chemical probe for studying KDM5 biological functions in vivo.


Subject(s)
Pyrazoles/chemistry , Pyrimidinones/chemistry , Retinoblastoma-Binding Protein 2/antagonists & inhibitors , Administration, Oral , Animals , Binding Sites , Crystallography, X-Ray , Female , Half-Life , Histones/metabolism , Humans , Liver/metabolism , Mice , Microsomes, Liver/metabolism , Molecular Dynamics Simulation , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Pyrimidinones/blood , Pyrimidinones/chemical synthesis , Pyrimidinones/pharmacokinetics , Rats , Retinoblastoma-Binding Protein 2/metabolism , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 26(18): 4492-4496, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27499454

ABSTRACT

Features from a high throughput screening (HTS) hit and a previously reported scaffold were combined to generate 1,7-naphthyridones as novel KDM5 enzyme inhibitors with nanomolar potencies. These molecules exhibited high selectivity over the related KDM4C and KDM2B isoforms. An X-ray co-crystal structure of a representative molecule bound to KDM5A showed that these inhibitors are competitive with the co-substrate (2-oxoglutarate or 2-OG).


Subject(s)
Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Naphthyridines/pharmacology , Nuclear Proteins/antagonists & inhibitors , Repressor Proteins/antagonists & inhibitors , Retinoblastoma-Binding Protein 2/antagonists & inhibitors , Animals , Crystallography, X-Ray , Dogs , Drug Design , Humans , Madin Darby Canine Kidney Cells , Naphthyridines/chemistry , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 26(17): 4350-4, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27476424

ABSTRACT

This communication describes the identification and optimization of a series of pan-KDM5 inhibitors derived from compound 1, a hit initially identified against KDM4C. Compound 1 was optimized to afford compound 20, a 10nM inhibitor of KDM5A. Compound 20 is highly selective for the KDM5 enzymes versus other histone lysine demethylases and demonstrates activity in a cellular assay measuring the increase in global histone 3 lysine 4 tri-methylation (H3K4me3). In addition compound 20 has good ADME properties, excellent mouse PK, and is a suitable starting point for further optimization.


Subject(s)
Enzyme Inhibitors/pharmacology , Retinoblastoma-Binding Protein 2/antagonists & inhibitors , Animals , Binding Sites , Blotting, Western , Cell Line , Drug Discovery , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Humans , Inhibitory Concentration 50 , Mice , Microsomes, Liver/enzymology , Models, Molecular , Rats
8.
Bioorg Med Chem Lett ; 25(17): 3644-9, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26189078

ABSTRACT

The discovery and optimization of a series of small molecule EZH2 inhibitors is described. Starting from dimethylpyridone HTS hit (2), a series of indole-based EZH2 inhibitors were identified. Biochemical potency and microsomal stability were optimized during these studies and afforded compound 22. This compound demonstrates nanomolar levels of biochemical potency (IC50=0.002 µM), cellular potency (EC50=0.080 µM), and afforded tumor regression when dosed (200 mpk SC BID) in an EZH2 dependent tumor xenograft model.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Indoles/chemistry , Polycomb Repressive Complex 2/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Chemistry Techniques, Synthetic , Drug Design , Drug Discovery , Drug Screening Assays, Antitumor , Drug Stability , Enhancer of Zeste Homolog 2 Protein , HeLa Cells/drug effects , Humans , Inhibitory Concentration 50 , Mice , Molecular Targeted Therapy/methods , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
9.
Bioorg Med Chem Lett ; 25(9): 1842-8, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25851940

ABSTRACT

In this report we detail the evolution of our previously reported thiophene isoxazole BET inhibitor chemotype exemplified by CPI-3 to a novel bromodomain selective chemotype (the methyl isoxazoleazepine chemotype) exemplified by carboxamide 23. The methyl isoxazoleazepine chemotype provides potent inhibition of the bromodomains of the BET family, excellent in vivo PK across species, low unbound clearance, and target engagement in a MYC PK-PD model.


Subject(s)
Azepines/pharmacology , Drug Design , Nuclear Proteins/antagonists & inhibitors , Oxazoles/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , RNA-Binding Proteins/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Azepines/chemical synthesis , Azepines/chemistry , Cell Cycle Proteins , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Oxazoles/chemical synthesis , Oxazoles/chemistry , Structure-Activity Relationship
10.
Bioorg Med Chem Lett ; 22(12): 4089-93, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22595176

ABSTRACT

Deregulation of the receptor tyrosine kinase c-Met has been implicated in several human cancers and is an attractive target for small molecule drug discovery. Herein, we report the discovery of a structurally diverse series of carbon-linked quinoline triazolopyridinones, which demonstrates nanomolar inhibition of c-Met kinase activity. This novel series of inhibitors exhibits favorable pharmacokinetics as well as potent inhibition of HGF-mediated c-Met phosphorylation in a mouse liver pharmacodynamic model.


Subject(s)
Antineoplastic Agents/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyridones/chemical synthesis , Quinolines/chemical synthesis , Triazoles/chemical synthesis , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Drug Discovery , Hepatocyte Growth Factor/metabolism , Humans , Male , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Models, Molecular , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/metabolism , Pyridones/pharmacology , Quinolines/pharmacology , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Triazoles/pharmacology
11.
J Med Chem ; 65(4): 3575-3596, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35143203

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent monogenic human disease, but to date, only one therapy (tolvaptan) is approved to treat kidney cysts in ADPKD patients. Cyclin-dependent kinase 5 (CDK5), an atypical member of the cyclin-dependent kinase family, has been implicated as a target for treating ADPKD. However, no compounds have been disclosed to date that selectively inhibit CDK5 while sparing the broader CDK family members. Herein, we report the discovery of CDK5 inhibitors, including GFB-12811, that are highly selective over the other tested kinases. In cellular assays, our compounds demonstrate CDK5 target engagement while avoiding anti-proliferative effects associated with inhibiting other CDKs. In addition, we show that the compounds in this series exhibit promising in vivo PK profiles, enabling their use as tool compounds for interrogating the role of CDK5 in ADPKD and other diseases.


Subject(s)
Cyclin-Dependent Kinase 5/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Cell Proliferation/drug effects , Cyclin-Dependent Kinases/antagonists & inhibitors , Drug Design , Drug Discovery , HEK293 Cells , Humans , Models, Molecular , Polycystic Kidney, Autosomal Dominant/drug therapy , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship , Substrate Specificity
12.
Sci Adv ; 8(27): eabj5633, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35857479

ABSTRACT

Pharmacodynamic (PD) studies are an essential component of preclinical drug discovery. Current approaches for PD studies, including the analysis of novel kidney disease targeting therapeutic agents, are limited to animal models with unclear translatability to the human condition. To address this challenge, we developed a novel approach for PD studies using transplanted, perfused human kidney organoids. We performed pharmacokinetic (PK) studies with GFB-887, an investigational new drug now in phase 2 trials. Orally dosed GFB-887 to athymic rats that had undergone organoid transplantation resulted in measurable drug exposure in transplanted organoids. We established the efficacy of orally dosed GFB-887 in PD studies, where quantitative analysis showed significant protection of kidney filter cells in human organoids and endogenous rat host kidneys. This widely applicable approach demonstrates feasibility of using transplanted human organoids in preclinical PD studies with an investigational new drug, empowering organoids to revolutionize drug discovery.


Subject(s)
Kidney Diseases , Organoids , Animals , Drug Discovery , Drugs, Investigational , Humans , Kidney , Rats
13.
Bioorg Med Chem Lett ; 21(7): 2064-70, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21376583

ABSTRACT

mTOR is part of the PI3K/AKT pathway and is a central regulator of cell growth and survival. Since many cancers display mutations linked to the mTOR signaling pathway, mTOR has emerged as an important target for oncology therapy. Herein, we report the discovery of triazine benzimidazole inhibitors that inhibit mTOR kinase activity with up to 200-fold selectivity over the structurally homologous kinase PI3Kα. When tested in a panel of cancer cell lines displaying various mutations, a selective inhibitor from this series inhibited cellular proliferation with a mean IC(50) of 0.41 µM. Lead compound 42 demonstrated up to 83% inhibition of mTOR substrate phosphorylation in a murine pharmacodynamic model.


Subject(s)
Benzimidazoles/pharmacology , Drug Discovery , TOR Serine-Threonine Kinases/antagonists & inhibitors , Triazines/pharmacology , Benzimidazoles/chemistry , Cell Line, Tumor , Crystallography, X-Ray , Humans , Hydrogen Bonding , Inhibitory Concentration 50 , Models, Molecular , Structure-Activity Relationship , Triazines/chemistry
14.
Bioorg Med Chem Lett ; 21(8): 2394-9, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21414779

ABSTRACT

The insulin-like growth factor-1 receptor (IGF-1R) plays an important role in the regulation of cell growth and differentiation, and in protection from apoptosis. IGF-1R has been shown to be an appealing target for the treatment of human cancer. Herein, we report the synthesis, structure-activity relationships (SAR), X-ray cocrystal structure and in vivo tumor study results for a series of 2,4-bis-arylamino-1,3-pyrimidines.


Subject(s)
Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Quinolines/chemical synthesis , Receptor, IGF Type 1/antagonists & inhibitors , Animals , Binding Sites , Crystallography, X-Ray , Drug Evaluation, Preclinical , Humans , Mice , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Quinolines/chemistry , Quinolines/pharmacokinetics , Receptor, IGF Type 1/metabolism , Structure-Activity Relationship , Xenograft Model Antitumor Assays
15.
ACS Med Chem Lett ; 11(6): 1213-1220, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32551003

ABSTRACT

Leveraging the catalytic machinery of LSD1 (KDM1A), a series of covalent styrenylcyclopropane LSD1 inhibitors were identified. These inhibitors represent a new class of mechanism-based inhibitors that target and covalently label the FAD cofactor of LSD1. The series was rapidly progressed to potent biochemical and cellular LSD1 inhibitors with good physical properties. This effort resulted in the identification of 34, a highly potent (<4 nM biochemical, 2 nM cell, and 1 nM GI50), and selective LSD1 inhibitor. In-depth kinetic profiling of 34 confirmed its covalent mechanism of action, validated the styrenylcyclopropane as an FAD-directed warhead, and demonstrated that the potency of this inhibitor is driven by improved non-covalent binding (K I). 34 demonstrated robust cell-killing activity in a panel of AML cell lines and robust antitumor activity in a Kasumi-1 xenograft model of AML when dosed orally at 1.5 mg/kg once daily.

16.
Bioorg Med Chem Lett ; 19(22): 6307-12, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19819693

ABSTRACT

Deregulation of the receptor tyrosine kinase c-Met has been implicated in several human cancers and is an attractive target for small molecule drug discovery. We previously showed that O-linked triazolopyridazines can be potent inhibitors of c-Met. Herein, we report the discovery of a related series of N-linked triazolopyridazines which demonstrate nanomolar inhibition of c-Met kinase activity and display improved pharmacodynamic profiles. Specifically, the potent time-dependent inhibition of cytochrome P450 associated with the O-linked triazolopyridazines has been eliminated within this novel series of inhibitors. N-linked triazolopyridazine 24 exhibited favorable pharmacokinetics and displayed potent inhibition of HGF-mediated c-Met phosphorylation in a mouse liver PD model. Once-daily oral administration of 24 for 22days showed significant tumor growth inhibition in an NIH-3T3/TPR-Met xenograft mouse efficacy model.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Apoptosis/physiology , Neovascularization, Physiologic/physiology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Animals , Cell Survival , Humans , Mice , Mice, Nude , Phosphorylation , Xenograft Model Antitumor Assays
17.
ACS Med Chem Lett ; 10(11): 1579-1585, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31749913

ABSTRACT

The nonselective Ca2+-permeable transient receptor potential (TRP) channels play important roles in diverse cellular processes, including actin remodeling and cell migration. TRP channel subfamily C, member 5 (TRPC5) helps regulate a tight balance of cytoskeletal dynamics in podocytes and is suggested to be involved in the pathogenesis of proteinuric kidney diseases, such as focal segmental glomerulosclerosis (FSGS). As such, protection of podocytes by inhibition of TRPC5 mediated Ca2+ signaling may provide a novel therapeutic approach for the treatment of proteinuric kidney diseases. Herein, we describe the identification of a novel TRPC5 inhibitor, GFB-8438, by systematic optimization of a high-throughput screening hit, pyridazinone 1. GFB-8438 protects mouse podocytes from injury induced by protamine sulfate (PS) in vitro. It is also efficacious in a hypertensive deoxycorticosterone acetate (DOCA)-salt rat model of FSGS, significantly reducing both total protein and albumin concentrations in urine.

18.
J Med Chem ; 51(6): 1668-80, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18324759

ABSTRACT

We have previously shown N-arylnaphthamides can be potent inhibitors of vascular endothelial growth factor receptors (VEGFRs). N-Alkyl and N-unsubstituted naphthamides were prepared and found to yield nanomolar inhibitors of VEGFR-2 (KDR) with an improved selectivity profile against a panel of tyrosine and serine/threonine kinases. The inhibitory activity of this series was retained at the cellular level. Naphthamides 3, 20, and 22 exhibited good pharmacokinetics following oral dosing and showed potent inhibition of VEGF-induced angiogenesis in the rat corneal model. Once-daily oral administration of 22 for 14 days led to 85% inhibition of established HT29 colon cancer and Calu-6 lung cancer xenografts at doses of 10 and 20 mg/kg, respectively.


Subject(s)
Antineoplastic Agents/pharmacology , Endothelial Cells/drug effects , Naphthalenes/pharmacology , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Corneal Neovascularization/blood , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Design , Drug Evaluation, Preclinical , Female , Humans , Inhibitory Concentration 50 , Injections, Intravenous , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Microsomes, Liver/drug effects , Models, Molecular , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Stereoisomerism , Structure-Activity Relationship
19.
J Med Chem ; 51(6): 1649-67, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18324761

ABSTRACT

A series of naphthyl-based compounds were synthesized as potential inhibitors of vascular endothelial growth factor (VEGF) receptors. Investigations of structure-activity relationships led to the identification of a series of naphthamides that are potent inhibitors of the VEGF receptor tyrosine kinase family. Numerous analogues demonstrated low nanomolar inhibition of VEGF-dependent human umbilical vein endothelial cell (HUVEC) proliferation, and of these several compounds possessed favorable pharmacokinetic (PK) profiles. In particular, compound 48 demonstrated significant antitumor efficacy against established HT29 human colon adenocarcinoma xenografts implanted in athymic mice. A full account of the preparation, structure-activity relationships, pharmacokinetic properties, and pharmacology of analogues within this series is presented.


Subject(s)
Antineoplastic Agents/pharmacology , Endothelial Cells/drug effects , Naphthalenes/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Corneal Neovascularization/blood , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Design , Drug Evaluation, Preclinical , Female , Humans , Inhibitory Concentration 50 , Injections, Intravenous , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Microsomes, Liver/drug effects , Models, Molecular , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Stereoisomerism , Structure-Activity Relationship
20.
J Med Chem ; 51(6): 1695-705, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18311900

ABSTRACT

Angiogenesis is vital for solid tumor growth, and its prevention is a proven strategy for the treatment of disease states such as cancer. The vascular endothelial growth factor (VEGF) pathway provides several opportunities by which small molecules can act as inhibitors of endothelial proliferation and migration. Critical to these processes is signaling through VEGFR-2 or the kinase insert domain receptor (KDR) upon stimulation by its ligand VEGF. Herein, we report the discovery of 2,3-dihydro-1,4-benzoxazines as inhibitors of intrinsic KDR activity (IC 50 < 0.1 microM) and human umbilical vein endothelial cell (HUVEC) proliferation with IC 50 < 0.1 microM. More specifically, compound 16 was identified as a potent (KDR: < 1 nM and HUVEC: 4 nM) and selective inhibitor that exhibited efficacy in angiogenic in vivo models. In addition, this series of molecules is typically well-absorbed orally, further demonstrating the 2,3-dihydro-1,4-benzoxazine moiety as a promising platform for generating kinase-based antiangiogenic therapeutic agents.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Benzoxazines/administration & dosage , Neoplasms/blood supply , Neovascularization, Pathologic/prevention & control , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Administration, Oral , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Animals , Benzoxazines/chemical synthesis , Benzoxazines/chemistry , Biological Availability , Cell Line , Cell Proliferation/drug effects , Corneal Neovascularization/blood , Crystallography, X-Ray , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Female , Humans , Injections, Subcutaneous , Ligands , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Models, Animal , Models, Molecular , Molecular Structure , Rats , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL