Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 233
Filter
Add more filters

Publication year range
1.
Mol Cell Proteomics ; 22(4): 100506, 2023 04.
Article in English | MEDLINE | ID: mdl-36796642

ABSTRACT

Major histocompatibility complex (MHC)-bound peptides that originate from tumor-specific genetic alterations, known as neoantigens, are an important class of anticancer therapeutic targets. Accurately predicting peptide presentation by MHC complexes is a key aspect of discovering therapeutically relevant neoantigens. Technological improvements in mass spectrometry-based immunopeptidomics and advanced modeling techniques have vastly improved MHC presentation prediction over the past 2 decades. However, improvement in the accuracy of prediction algorithms is needed for clinical applications like the development of personalized cancer vaccines, the discovery of biomarkers for response to immunotherapies, and the quantification of autoimmune risk in gene therapies. Toward this end, we generated allele-specific immunopeptidomics data using 25 monoallelic cell lines and created Systematic Human Leukocyte Antigen (HLA) Epitope Ranking Pan Algorithm (SHERPA), a pan-allelic MHC-peptide algorithm for predicting MHC-peptide binding and presentation. In contrast to previously published large-scale monoallelic data, we used an HLA-null K562 parental cell line and a stable transfection of HLA allele to better emulate native presentation. Our dataset includes five previously unprofiled alleles that expand MHC diversity in the training data and extend allelic coverage in underprofiled populations. To improve generalizability, SHERPA systematically integrates 128 monoallelic and 384 multiallelic samples with publicly available immunoproteomics data and binding assay data. Using this dataset, we developed two features that empirically estimate the propensities of genes and specific regions within gene bodies to engender immunopeptides to represent antigen processing. Using a composite model constructed with gradient boosting decision trees, multiallelic deconvolution, and 2.15 million peptides encompassing 167 alleles, we achieved a 1.44-fold improvement of positive predictive value compared with existing tools when evaluated on independent monoallelic datasets and a 1.17-fold improvement when evaluating on tumor samples. With a high degree of accuracy, SHERPA has the potential to enable precision neoantigen discovery for future clinical applications.


Subject(s)
Neoplasms , Peptides , Humans , Peptides/metabolism , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class II , Major Histocompatibility Complex , HLA Antigens/genetics , HLA Antigens/metabolism
2.
Clin Infect Dis ; 78(1): 31-39, 2024 01 25.
Article in English | MEDLINE | ID: mdl-37633257

ABSTRACT

BACKGROUND: The clinical and microbial factors associated with Klebsiella pneumoniae bloodstream infections (BSIs) are not well characterized. Prior studies have focused on highly resistant or hypervirulent isolates, limiting our understanding of K. pneumoniae strains that commonly cause BSI. We performed a record review and whole-genome sequencing to investigate the clinical characteristics, bacterial diversity, determinants of antimicrobial resistance, and risk factors for in-hospital death in a cohort of patients with K. pneumoniae BSI. METHODS: We identified 562 patients at Massachusetts General Hospital with K. pneumoniae BSIs between 2016 and 2022. We collected data on comorbid conditions, infection source, clinical outcomes, and antibiotic resistance and performed whole-genome sequencing on 108 sequential BSI isolates from 2021 to 2022. RESULTS: Intra-abdominal infection was the most common source of infection accounting for 34% of all BSIs. A respiratory tract source accounted for 6% of BSIs but was associated with a higher in-hospital mortality rate (adjusted odds ratio, 5.4 [95% confidence interval, 2.2-12.8]; P < .001 for comparison with other sources). Resistance to the first antibiotic prescribed was also associated with a higher risk of death (adjusted odds ratio, 5.2 [95% confidence interval, 2.2-12.4]; P < .001). BSI isolates were genetically diverse, and no clusters of epidemiologically and genetically linked cases were observed. Virulence factors associated with invasiveness were observed at a low prevalence, although an unexpected association between O-antigen type and the source of infection was found. CONCLUSIONS: These observations demonstrate the versatility of K. pneumoniae as an opportunistic pathogen and highlight the need for new approaches for surveillance and the rapid identification of patients with invasive antimicrobial-resistant K. pneumoniae infection.


Subject(s)
Bacteremia , Cross Infection , Klebsiella Infections , Sepsis , Humans , Klebsiella pneumoniae , Cross Infection/epidemiology , Hospital Mortality , Bacteremia/microbiology , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Sepsis/drug therapy , Genomics
3.
Emerg Infect Dis ; 29(9): 1929-1932, 2023 09.
Article in English | MEDLINE | ID: mdl-37610182

ABSTRACT

In Haiti in 2017, the prevalence of serum vibriocidal antibody titers against Vibrio cholerae serogroup O1 among adults was 12.4% in Cerca-la-Source and 9.54% in Mirebalais, suggesting a high recent prevalence of infection. Improved surveillance programs to monitor cholera and guide public health interventions in Haiti are necessary.


Subject(s)
Cholera , Vibrio cholerae O1 , Adult , Humans , Haiti/epidemiology , Seroepidemiologic Studies , Cholera/epidemiology , Public Health
4.
Genome Res ; 30(3): 415-426, 2020 03.
Article in English | MEDLINE | ID: mdl-32156711

ABSTRACT

Accurate massively parallel sequencing (MPS) of genetic variants is key to many areas of science and medicine, such as cataloging population genetic variation and diagnosing genetic diseases. Certain genomic positions can be prone to higher rates of systematic sequencing and alignment bias that limit accuracy, resulting in false positive variant calls. Current standard practices to differentiate between loci that can and cannot be sequenced with high confidence utilize consensus between different sequencing methods as a proxy for sequencing confidence. These practices have significant limitations, and alternative methods are required to overcome them. We have developed a novel statistical method based on summarizing sequenced reads from whole-genome clinical samples and cataloging them in "Incremental Databases" that maintain individual confidentiality. Allele statistics were cataloged for each genomic position that consistently showed systematic biases with the corresponding MPS sequencing pipeline. We found systematic biases present at ∼1%-3% of the human autosomal genome across five patient cohorts. We identified which genomic regions were more or less prone to systematic biases, including large homopolymer flanks (odds ratio = 23.29-33.69) and the NIST high confidence genomic regions (odds ratio = 0.154-0.191). We confirmed our predictions on a gold-standard reference genome and showed that these systematic biases can lead to suspect variant calls within clinical panels. Our results recommend increased caution to address systematic biases in whole-genome sequencing and alignment. This study provides the implementation of a simple statistical approach to enhance quality control of clinically sequenced samples by flagging variants at suspect loci for further analysis or exclusion.


Subject(s)
High-Throughput Nucleotide Sequencing , Whole Genome Sequencing , Alleles , Data Interpretation, Statistical , Genetic Loci , Genomics , High-Throughput Nucleotide Sequencing/standards , Humans , Whole Genome Sequencing/standards
5.
Mol Cell Proteomics ; 20: 100111, 2021.
Article in English | MEDLINE | ID: mdl-34126241

ABSTRACT

Major histocompatibility complex (MHC)-bound peptides that originate from tumor-specific genetic alterations, known as neoantigens, are an important class of anticancer therapeutic targets. Accurately predicting peptide presentation by MHC complexes is a key aspect of discovering therapeutically relevant neoantigens. Technological improvements in mass-spectrometry-based immunopeptidomics and advanced modeling techniques have vastly improved MHC presentation prediction over the past two decades. However, improvement in the sensitivity and specificity of prediction algorithms is needed for clinical applications such as the development of personalized cancer vaccines, the discovery of biomarkers for response to checkpoint blockade, and the quantification of autoimmune risk in gene therapies. Toward this end, we generated allele-specific immunopeptidomics data using 25 monoallelic cell lines and created Systematic HLA Epitope Ranking Pan Algorithm (SHERPA), a pan-allelic MHC-peptide algorithm for predicting MHC-peptide binding and presentation. In contrast to previously published large-scale monoallelic data, we used an HLA-null K562 parental cell line and a stable transfection of HLA alleles to better emulate native presentation. Our dataset includes five previously unprofiled alleles that expand MHC-binding pocket diversity in the training data and extend allelic coverage in under profiled populations. To improve generalizability, SHERPA systematically integrates 128 monoallelic and 384 multiallelic samples with publicly available immunoproteomics data and binding assay data. Using this dataset, we developed two features that empirically estimate the propensities of genes and specific regions within gene bodies to engender immunopeptides to represent antigen processing. Using a composite model constructed with gradient boosting decision trees, multiallelic deconvolution, and 2.15 million peptides encompassing 167 alleles, we achieved a 1.44-fold improvement of positive predictive value compared with existing tools when evaluated on independent monoallelic datasets and a 1.15-fold improvement when evaluating on tumor samples. With a high degree of accuracy, SHERPA has the potential to enable precision neoantigen discovery for future clinical applications.


Subject(s)
Antigens, Neoplasm , Major Histocompatibility Complex , Models, Theoretical , Peptides , Algorithms , Antigen Presentation , Cell Line , Humans , Proteome , Transcriptome
6.
Emerg Infect Dis ; 28(11)2022 11.
Article in English | MEDLINE | ID: mdl-36286224

ABSTRACT

We applied a new serosurveillance tool to estimate typhoidal Salmonella burden using samples collected during 2020 from a population in Juba, South Sudan. By using dried blood spot testing, we found an enteric fever seroincidence rate of 30/100 person-years and cumulative incidence of 74% over a 4-year period.


Subject(s)
Paratyphoid Fever , Typhoid Fever , Humans , Typhoid Fever/epidemiology , Salmonella paratyphi A , Salmonella typhi , South Sudan/epidemiology , Salmonella , Paratyphoid Fever/epidemiology
7.
Ann Plast Surg ; 88(3 Suppl 3): S229-S234, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35513325

ABSTRACT

In 2019, the plastic surgery residency match changed their method for inviting students to interview. Instead of offering interview invitations and scheduling interviews on a first come, first served basis, all plastic surgery residency programs sent out secured interview spots on the same day. This universal offer date was intended to remove student worry that surrounded not scheduling an interview fast enough, as well as cause students to more carefully select which interview invitations to accept, increasing the likelihood that residency programs could interview only those students most interested in matching at their institutions. The effect of universal offer date was studied through analysis of available National Residency Match Program data, with a focus on the mean number of contiguous programs students ranked to match, as well as the mean number of applicants who residency programs ranked to fill each available position. Historical trends in plastic surgery match, trends in the match in other competitive surgical subspecialties, and applicant qualifications were also analyzed. In breaking with the general trend among all surgical subspecialties toward ranking more applicants per residency position, in 2020, fewer plastic surgery applicants were ranked by residency programs per available position, suggesting a more effective interview process and match. Matched applicant qualifications remained excellent across the period studied.


Subject(s)
Internship and Residency , Surgery, Plastic , Humans , Surgery, Plastic/education
8.
Ann Plast Surg ; 88(3 Suppl 3): S302-S308, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35513336

ABSTRACT

BACKGROUND: Nipple reconstruction is widely regarded as the final step in postmastectomy breast reconstruction. While grafts, local flaps, or combination approaches have been used in nipple reconstruction, none has been able to achieve reliable long-term projection preservation. In response, we have sought to bioengineer neonipples in situ via the implantation of processed, decellularized cartilage xenografts placed within 3-dimensional-printed polylactic acid (PLA) scaffolds. MATERIALS AND METHODS: External nipple scaffolds were designed in-house and 3-dimensional-printed with PLA filament. Decellularized ovine xenograft infill was prepared and processed by mincing or zesting. All nipple scaffolds were placed subcutaneously on the dorsa of Sprague-Dawley rats and explanted after 1, 3, and 6 months for analysis. RESULTS: Explanted nipple scaffolds demonstrated gross maintenance of scaffold shape, diameter, and projection with accompanying increases in tissue volume. Histologic analyses revealed preservation of native cartilage architecture after 6 months without evidence of degradation. Analysis of formed tissue within the scaffolds revealed a progressive invasion of fibrovascular tissue with identifiable vascular channels and adipose tissue after 6 months in vivo. Confined compression testing revealed equilibrium moduli of both minced and zested samples that were within the expected range of previously reported human nipple tissue, while these data revealed no differences in the mechanical properties of the neotissue between time points or processing techniques. CONCLUSIONS: These preliminary data support potential use of decellularized allograft to foster healthy tissue ingrowth within a PLA scaffold, thereby offering a novel solution to current limitations in nipple reconstruction.


Subject(s)
Breast Neoplasms , Nipples , Animals , Breast Neoplasms/surgery , Female , Heterografts , Humans , Mastectomy , Nipples/surgery , Polyesters , Rats , Rats, Sprague-Dawley , Sheep , Tissue Engineering/methods , Tissue Scaffolds
9.
Surg Technol Int ; 40: 97-103, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35168288

ABSTRACT

BACKGROUND: Since its adoption as a surgical technique over a half-century ago, stapling has continually undergone improvements, both in the devices used and in our understanding of tissue mechanics. To best design and use stapling devices, it is beneficial to have an intimate knowledge of the response of tissue to compression and stapling dynamics. This paper provides the relevant background in the field of biomechanics, and in particular addresses the viscoelastic behavior of soft tissues under compression. Biomechanics of Stapling: The change in shape of a solid, or strain, is related to the load applied, or stress. Biological tissues are known to have non-linear relationships between stress and strain, and generally the relationships are anisotropic (dependent upon direction). Further complicating matters, there is typically a time-dependency to the relationship for compression and recovery, resulting in viscoelastic behavior. Hence both the amount and rate of compressive force applied can be expected to impact the outcome of stapling. DISCUSSION: The growth of the laparoscopic use of staples has increased the difficulty of device design, as precise control of compression is problematic in extended length staplers. Progressive firing along the cartridge and multi-stage compression have both been found to be beneficial in providing the uniform force needed to produce well-formed staples. Such technical advances can reduce stresses within the stapler, preventing deformation of the stapler arm and undesirable strain in the tissue. Current research includes understanding the effects of changing the rate of compression on staple formation with the hope that further improvements can be achieved in this ever-fruitful method of tissue apposition.


Subject(s)
Laparoscopy , Surgeons , Equipment Design , Humans , Surgical Staplers , Surgical Stapling/methods , Sutures
10.
J Infect Dis ; 224(12 Suppl 2): S732-S737, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34668561

ABSTRACT

A correlate of protection (CoP) is a measured adaptive immune response to vaccination or infection that is associated with protection against disease. However, the degree to which a CoP can serve as a surrogate end point for vaccine efficacy should depend on the robustness of this association. While cholera toxin is a dominant target of the human antibody response to Vibrio cholerae infection, antitoxin responses are not associated with long-term immunity, and are not effective CoPs for cholera. Instead, protection appears to be mediated by functional antibodies that target the O-polysaccharide coated V. cholerae outer membrane. Vibriocidal antibodies, which are complement-dependent bactericidal antibodies, remain the most accepted CoP for cholera and are used as surrogate end points in some vaccine studies. However, the association between vibriocidal antibody titers and immunity is not absolute, and they are unlikely to reflect a mechanistic correlate of protection against cholera.


Subject(s)
Adaptive Immunity , Cholera Vaccines , Cholera/prevention & control , Vaccine Efficacy , Vibrio cholerae/immunology , Antibodies, Bacterial/immunology , Cholera Toxin/immunology , Cholera Vaccines/adverse effects , Cholera Vaccines/immunology , Humans , Vibrio cholerae O1/immunology
11.
J Infect Dis ; 223(2): 342-351, 2021 02 03.
Article in English | MEDLINE | ID: mdl-32610345

ABSTRACT

BACKGROUND: Susceptibility to Vibrio cholerae infection is affected by blood group, age, and preexisting immunity, but these factors only partially explain who becomes infected. A recent study used 16S ribosomal RNA amplicon sequencing to quantify the composition of the gut microbiome and identify predictive biomarkers of infection with limited taxonomic resolution. METHODS: To achieve increased resolution of gut microbial factors associated with V. cholerae susceptibility and identify predictors of symptomatic disease, we applied deep shotgun metagenomic sequencing to a cohort of household contacts of patients with cholera. RESULTS: Using machine learning, we resolved species, strains, gene families, and cellular pathways in the microbiome at the time of exposure to V. cholerae to identify markers that predict infection and symptoms. Use of metagenomic features improved the precision and accuracy of prediction relative to 16S sequencing. We also predicted disease severity, although with greater uncertainty than our infection prediction. Species within the genera Prevotella and Bifidobacterium predicted protection from infection, and genes involved in iron metabolism were also correlated with protection. CONCLUSION: Our results highlight the power of metagenomics to predict disease outcomes and suggest specific species and genes for experimental testing to investigate mechanisms of microbiome-related protection from cholera.


Subject(s)
Cholera/diagnosis , Cholera/microbiology , Metagenomics , Vibrio cholerae/physiology , Biomarkers , Disease Susceptibility , Gastrointestinal Microbiome , Metagenome , Metagenomics/methods , Phylogeny , Prognosis , ROC Curve , Severity of Illness Index
12.
Infect Immun ; 89(9): e0021721, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34228490

ABSTRACT

Cholera is a diarrheal disease caused by Vibrio cholerae that continues to be a major public health concern in populations without access to safe water. IgG- and IgA-secreting memory B cells (MBC) targeting the V. cholerae O-specific polysaccharide (OSP) correlate with protection from infection in persons exposed to V. cholerae and may be a major determinant of long-term protection against cholera. Shanchol, a widely used oral cholera vaccine (OCV), stimulates OSP MBC responses in only some people after vaccination, and the gut microbiota is a possible determinant of variable immune responses observed after OCV. Using 16S rRNA sequencing of feces from the time of vaccination, we compared the gut microbiota among adults with and without MBC responses to OCV. Gut microbial diversity measures were not associated with MBC isotype or OSP-specific responses, but individuals with a higher abundance of Clostridiales and lower abundance of Enterobacterales were more likely to develop an MBC response. We applied protein-normalized fecal supernatants of high and low MBC responders to THP-1-derived human macrophages to investigate the effect of microbial factors at the time of vaccination. Feces from individuals with higher MBC responses induced significantly different IL-1ß and IL-6 levels than individuals with lower responses, indicating that the gut microbiota at the time of vaccination may "prime" the mucosal immune response to vaccine antigens. Our results suggest the gut microbiota could impact immune responses to OCVs, and further study of microbial metabolites as potential vaccine adjuvants is warranted.


Subject(s)
B-Lymphocytes/immunology , Cholera Vaccines/immunology , Cholera/immunology , Cholera/microbiology , Gastrointestinal Microbiome , Immunologic Memory , Vibrio cholerae/immunology , Administration, Oral , Adolescent , Adult , Antibody Specificity/immunology , B-Lymphocytes/metabolism , Cholera/prevention & control , Cholera Vaccines/administration & dosage , Female , Host-Pathogen Interactions/immunology , Humans , Male , Microbial Interactions , Vaccination , Young Adult
13.
Emerg Infect Dis ; 27(6): 1598-1606, 2021 06.
Article in English | MEDLINE | ID: mdl-34013872

ABSTRACT

Relatively few coronavirus disease cases and deaths have been reported from sub-Saharan Africa, although the extent of its spread remains unclear. During August 10-September 11, 2020, we recruited 2,214 participants for a representative household-based cross-sectional serosurvey in Juba, South Sudan. We found 22.3% of participants had severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain IgG titers above prepandemic levels. After accounting for waning antibody levels, age, and sex, we estimated that 38.3% (95% credible interval 31.8%-46.5%) of the population had been infected with SARS-CoV-2. At this rate, for each PCR-confirmed SARS-CoV-2 infection reported by the Ministry of Health, 103 (95% credible interval 86-126) infections would have been unreported, meaning SARS-CoV-2 has likely spread extensively within Juba. We also found differences in background reactivity in Juba compared with Boston, Massachusetts, USA, where the immunoassay was validated. Our findings underscore the need to validate serologic tests in sub-Saharan Africa populations.


Subject(s)
COVID-19 , SARS-CoV-2 , Africa South of the Sahara , Antibodies, Viral , Boston , Cross-Sectional Studies , Humans , Immunoglobulin G , Massachusetts , Seroepidemiologic Studies , South Sudan
14.
Curr Opin Infect Dis ; 34(5): 423-431, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34267046

ABSTRACT

PURPOSE OF REVIEW: Antimicrobial resistance (AMR) in bacteria poses a major risk to global public health, with many factors contributing to the observed increase in AMR. International travel is one recognized contributor. The purpose of this review is to summarize current knowledge regarding the acquisition, carriage and spread of AMR bacteria by international travelers. RECENT FINDINGS: Recent studies have highlighted that travel is an important risk factor for the acquisition of AMR bacteria, with approximately 30% of studied travelers returning with an acquired AMR bacterium. Epidemiological studies have shown there are three major risk factors for acquisition: travel destination, antimicrobial usage and travelers' diarrhea (TD). Analyses have begun to illustrate the AMR genes that are acquired and spread by travelers, risk factors for acquisition and carriage of AMR bacteria, and local transmission of imported AMR organisms. SUMMARY: International travel is a contributor to the acquisition and dissemination of AMR organisms globally. Efforts to reduce the burden of AMR organisms should include a focus on international travelers. Routine genomic surveillance would further elucidate the role of international travel in the global spread of AMR bacteria.


Subject(s)
Diarrhea , Travel , Anti-Bacterial Agents/therapeutic use , Bacteria , Diarrhea/drug therapy , Global Health , Humans
15.
FASEB J ; 34(10): 13877-13884, 2020 10.
Article in English | MEDLINE | ID: mdl-32856766

ABSTRACT

The diagnosis of COVID-19 requires integration of clinical and laboratory data. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic assays play a central role in diagnosis and have fixed technical performance metrics. Interpretation becomes challenging because the clinical sensitivity changes as the virus clears and the immune response emerges. Our goal was to examine the clinical sensitivity of two most common SARS-CoV-2 diagnostic test modalities, polymerase chain reaction (PCR) and serology, over the disease course to provide insight into their clinical interpretation in patients presenting to the hospital. We conducted a single-center, retrospective study. To derive clinical sensitivity of PCR, we identified 209 PCR-positive SARS-CoV-2 patients with multiple PCR test results (624 total PCR tests) and calculated daily sensitivity from date of symptom onset or first positive test. Clinical sensitivity of PCR decreased with days post symptom onset with >90% clinical sensitivity during the first 5 days after symptom onset, 70%-71% from Days 9 to 11, and 30% at Day 21. To calculate daily clinical sensitivity by serology, we utilized 157 PCR-positive patients with a total of 197 specimens tested by enzyme-linked immunosorbent assay for IgM, IgG, and IgA anti-SARS-CoV-2 antibodies. In contrast to PCR, serological sensitivity increased with days post symptom onset with >50% of patients seropositive by at least one antibody isotype after Day 7, >80% after Day 12, and 100% by Day 21. Taken together, PCR and serology are complimentary modalities that require time-dependent interpretation. Superimposition of sensitivities over time indicate that serology can function as a reliable diagnostic aid indicating recent or prior infection.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , COVID-19/diagnosis , SARS-CoV-2 , Antibodies, Viral/blood , COVID-19/blood , Female , Hospitals , Humans , Male , Middle Aged , Retrospective Studies , Sensitivity and Specificity
16.
Risk Anal ; 41(8): 1257-1273, 2021 08.
Article in English | MEDLINE | ID: mdl-33205479

ABSTRACT

Given the threat of radiological and nuclear terrorism, it is imperative to understand and evaluate the security risk of radioactive sources. In this context, risk assessment is a function of threat, vulnerability, and consequences. Currently, no broad risk index exists for radiological facilities, such as healthcare centers and universities. This study aims to develop and demonstrate a methodology to compute a potential facility risk index (PFRI) based on a probable loss event (LE) and loss magnitude (LM) resulting from a radiological dispersal device (RDD) attack. The threat component of the PFRI is devised as a utility function weighing the threat group attributes and RDD radioactive material preference. The principles of probabilistic risk assessment and pathway analysis are implemented to account for RDD radioactive material theft probabilities in different attack scenarios. Locational hazards and nuclear security culture are measured as a function of radiological facility vulnerability for LE. The LM of the attack, in the form of loss of life and economic damage, is then estimated to construct the PFRI. The methodology is applied to a hypothetical healthcare facility with a single radioactive material asset. For this example, the PFRI resulted in a value of 2.0 (on a scale of 1-10), showing low risk to the facility. The development of the PFRI provides a risk analysis tool that may be useful in making decisions for radiological security improvements.


Subject(s)
Disaster Planning , Nuclear Weapons , Radioactive Hazard Release , Risk Assessment/methods , Adolescent , Adult , Child , Decision Making , Facility Design and Construction , Hospitals , Humans , Indiana , Neoplasms/prevention & control , Probability , Radiation Injuries/prevention & control , Radiosurgery/instrumentation , Risk , Terrorism , Young Adult
19.
Proc Natl Acad Sci U S A ; 113(41): 11555-11560, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27681629

ABSTRACT

Somatic mosaicism, the occurrence and propagation of genetic variation in cell lineages after fertilization, is increasingly recognized to play a causal role in a variety of human diseases. We investigated the case of life-threatening arrhythmia in a 10-day-old infant with long QT syndrome (LQTS). Rapid genome sequencing suggested a variant in the sodium channel NaV1.5 encoded by SCN5A, NM_000335:c.5284G > T predicting p.(V1762L), but read depth was insufficient to be diagnostic. Exome sequencing of the trio confirmed read ratios inconsistent with Mendelian inheritance only in the proband. Genotyping of single circulating leukocytes demonstrated the mutation in the genomes of 8% of patient cells, and RNA sequencing of cardiac tissue from the infant confirmed the expression of the mutant allele at mosaic ratios. Heterologous expression of the mutant channel revealed significantly delayed sodium current with a dominant negative effect. To investigate the mechanism by which mosaicism might cause arrhythmia, we built a finite element simulation model incorporating Purkinje fiber activation. This model confirmed the pathogenic consequences of cardiac cellular mosaicism and, under the presenting conditions of this case, recapitulated 2:1 AV block and arrhythmia. To investigate the extent to which mosaicism might explain undiagnosed arrhythmia, we studied 7,500 affected probands undergoing commercial gene-panel testing. Four individuals with pathogenic variants arising from early somatic mutation events were found. Here we establish cardiac mosaicism as a causal mechanism for LQTS and present methods by which the general phenomenon, likely to be relevant for all genetic diseases, can be detected through single-cell analysis and next-generation sequencing.


Subject(s)
Genetic Predisposition to Disease , Long QT Syndrome/genetics , Mosaicism , Action Potentials , Arrhythmias, Cardiac/complications , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Base Sequence , Cardiomyopathy, Dilated/complications , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/physiopathology , Computer Simulation , Diffusion , Electrocardiography , Gene Frequency/genetics , Genes, Dominant , Genetic Loci , Genotyping Techniques , Heart Conduction System/physiopathology , High-Throughput Nucleotide Sequencing , Humans , Infant , Ion Channel Gating/genetics , Long QT Syndrome/complications , Long QT Syndrome/diagnostic imaging , Long QT Syndrome/physiopathology , Models, Biological , Mutation/genetics , Myocytes, Cardiac/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , Phenotype , Single-Cell Analysis
20.
J Infect Dis ; 218(suppl_3): S141-S146, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30184117

ABSTRACT

Vibrio cholerae is a prototypical noninvasive mucosal pathogen, yet infection generates long-lasting protection against subsequent disease. Vibriocidal antibody responses are an imperfect but established correlate of protection against cholera following both infection and vaccination. However, vibriocidal antibody responses are likely a surrogate marker for longer-lasting functional immune responses that target the O-polysaccharide antigen at the mucosal surface. While the current bivalent inactivated oral whole cell vaccine is being increasingly used to prevent cholera in areas where the disease is a threat, the most significant limitation of this vaccine is it offers relatively limited direct protection in young children. Future strategies for cholera vaccination include the development of cholera conjugate vaccines and the further development of live attenuated vaccines. Ultimately, the goal of a multivalent vaccine for cholera and other childhood enteric infections that can be incorporated into a standard immunization schedule should be realized.


Subject(s)
Cholera Vaccines/immunology , Cholera/immunology , Immunity/immunology , Antibodies, Bacterial/immunology , Antibody Formation/immunology , Cholera Toxin/immunology , Humans , Immunization Schedule , O Antigens/immunology , Vaccination/methods , Vaccines, Attenuated/immunology , Vaccines, Conjugate/immunology , Vaccines, Inactivated/immunology , Vibrio cholerae/immunology
SELECTION OF CITATIONS
SEARCH DETAIL