Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Eur J Immunol ; 54(6): e2350620, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561974

ABSTRACT

With the continued transmission of SARS-CoV-2 across widely vaccinated populations, it remains important to develop new vaccines and vaccination strategies capable of providing protective immunity and limiting the spread of disease. Heterologous prime-boost vaccination based on the selection of different vaccine formulations and administration routes for priming and booster doses presents a promising strategy for inducing broader immune responses in key systemic and respiratory mucosal compartments. Intranasal vaccination can induce mucosal immune responses at the site of SARS-CoV-2 infection; however, the lack of clinically approved mucosal adjuvants makes it difficult to induce robust immune responses with protein subunit vaccines. Herein, we evaluated the immunogenicity of heterologous prime-boost regimens in mice and hamsters based on a parenteral vaccination of the antigen in combination with sulfated lactosylarchaeol (SLA) archaeosomes, a liposome adjuvant comprised of a single semisynthetic archaeal lipid, followed by an intranasally administered unadjuvanted SARS-CoV-2 spike antigen. Intranasal administration of unadjuvanted spike to mice and hamsters increased serum spike-specific IgG titers and spike-neutralizing activity compared with nonboosted animals. Spike-specific IgA responses were also detected in the bronchoalveolar lavage fluid in the lungs of mice that received an intranasal boost. In hamsters, the intranasal boost showed high efficacy against SARS-CoV-2 infection by protecting from body weight loss and reducing viral titers in the lungs and nasal turbinate. Overall, our heterologous intramuscular prime-intranasal boost with SLA-adjuvanted and unadjuvanted spike, respectively, demonstrated the potential of protein subunit formulations to promote antigen-specific systemic and mucosal immune responses.


Subject(s)
Administration, Intranasal , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Subunit , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/administration & dosage , Mice , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Cricetinae , COVID-19/prevention & control , COVID-19/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Immunization, Secondary , Adjuvants, Immunologic/administration & dosage , Mice, Inbred BALB C , Immunity, Mucosal/immunology , Humans , Vaccination/methods
2.
Glycobiology ; 32(8): 691-700, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35436341

ABSTRACT

In this study, we investigated the utility of glycoconjugates based on a linear α-1,6-glucan chain synthesized using a recombinant α-1,6-glucosyltransferase from the 26695 strain of Helicobacter pylori. Capillary electrophoresis-mass spectrometry analysis confirmed the main product to contain 9-10 sequentially added α-1,6-linked glucose residues. This was consistent with a length of α-1,6-glucan structure present in the outer core region of H. pylori lipopolysaccharide (LPS) from strains 26695 and 26695 HP0826::Kan. The synthetic α-1,6-glucan was conjugated to either bovine serum albumin or tetanus toxoid and immunological properties of resultant glycoconjugates investigated. The conjugates were immunogenic in rabbits and mice and induced strong and specific IgG responses against purified LPS from typeable and nontypeable α-1,6-glucan-positive H. pylori strains. Furthermore, the post-immune sera from rabbits that received the conjugates were bactericidal and cross-reacted with selected clarithromycin-resistant and clarithromycin-susceptible clinical isolates of H. pylori. This technology offers a novel approach to the design of a synthetic carbohydrate-based vaccine against H. pylori.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Animals , Clarithromycin , Glucans/chemistry , Glycoconjugates/chemistry , Helicobacter Infections/prevention & control , Lipopolysaccharides/chemistry , Mice , Rabbits , Vaccines, Conjugate
3.
J Liposome Res ; 31(3): 237-245, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32583693

ABSTRACT

Archaeosomes, composed of sulphated lactosyl archaeol (SLA) glycolipids, have been proven to be an effective vaccine adjuvant in multiple preclinical models of infectious disease or cancer. In addition to efficacy, the stability of vaccine components including the adjuvant is an important parameter to consider when developing novel vaccine formulations. To properly evaluate the potential of SLA glycolipids to be used as vaccine adjuvants in a clinical setting, a comprehensive evaluation of their stability is required. Herein, we evaluated the long term stability of preformed empty SLA archaeosomes prior to admixing with antigen at 4 °C or 37 °C for up to 6 months. In addition, the stability of adjuvant and antigen was evaluated for up to 1 month following admixing. Multiple analytical parameters evaluating the molecular integrity of SLA and the liposomal profile were assessed. Following incubation at 4 °C or 37 °C, the SLA glycolipid did not show any pattern of degradation as determined by mass spectroscopy, nuclear magnetic resonance (NMR) and thin layer chromatography (TLC). In addition, SLA archaeosome vesicle characteristics, such as size, zeta potential, membrane fluidity and vesicular morphology, were largely consistent throughout the course of the study. Importantly, following storage for 6 months at both 4 °C and 37 °C, the adjuvant properties of empty SLA archaeosomes were unchanged, and following admixing with antigen, the immunogenicity of the vaccine formulations was also unchanged when stored at both 4 °C and 37 °C for up to 1 month. Overall this indicates that SLA archaeosomes are highly stable adjuvants that retain their activity over an extended period of time even when stored at high temperatures.


Subject(s)
Liposomes , Vaccines , Antigens, Archaeal , Immunity, Cellular , Lipids
4.
Can J Microbiol ; 60(1): 35-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24392924

ABSTRACT

Lipopolysaccharide (LPS) of Helicobacter pylori exhibits several unique structures, such as Lewis (Le) antigens, α-1,6-glucan, and dd-heptan. To investigate the relationship between LPS structure and resistance to clarithromycin, 41 Canadian isolates of H. pylori were characterized by whole-cell ELISA (enzyme-linked immunosorbent assay), sugar analysis, immunoblotting, and indirect immunofluorescence. The expression of type 2 Lewis X and (or) Lewis Y antigens was detected in 22 of 23 (95.7%) clarithromycin-resistant and in 14 of 18 (77.7%) clarithromycin-susceptible H. pylori strains (P < 0.05), and 8 isolates co-expressed type 1 and type 2 Le antigens (8/41, 19.5%). A significantly higher frequency of α-1,6-glucan (P < 0.01) was detected in clarithromycin-resistant strains than in clarithromycin-susceptible strains (19/23 (82.6%) versus 11/18 (61.1%)). Sugar analysis of selected α-1,6-glucan-positive H. pylori strains confirmed that they frequently contained elevated amounts of dd-heptose. Clarithromycin-resistant isolates were also characterized by low expression levels or absence of CagA (17/23, 73.9%). Indirect immunofluorescence studies carried out on selected H. pylori strains with rabbit immune sera specific for α-1,6-glucan confirmed broad recognition of α-1,6-glucan epitope. The binding was not affected by LPS glycotype of H. pylori isolates examined nor by their CagA status or resistance to clarithromycin. These findings suggest α-1,6-glucan as a potential vaccine target, especially in an era of increasing clarithromycin resistance in H. pylori.


Subject(s)
Clarithromycin/pharmacology , Helicobacter pylori/chemistry , Helicobacter pylori/drug effects , Polysaccharides, Bacterial/chemistry , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Canada , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay/methods , Fluorescent Antibody Technique, Indirect/methods , Helicobacter Infections/microbiology , Helicobacter pylori/isolation & purification , Helicobacter pylori/metabolism , Humans , Immunoblotting/methods , Lipopolysaccharides/analysis , Lipopolysaccharides/chemistry
5.
Vaccine ; 42(1): 40-52, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38042697

ABSTRACT

The virus-like particle (VLP) platform is a robust inducer of humoral and cellular immune responses; hence, it has been used in vaccine development for several infectious diseases. In the current work, VLPs carrying SARS-CoV-2 Spike (S) protein (Wuhan strain) with an HIV-1 Gag core were produced using suspension HEK 293SF-3F6 cells by transient transfection. The Gag was fused with green fluorescent protein (GFP) for rapid quantification of the VLPs. Five different versions of Gag-Spike VLPs (Gag-S-VLPs) consisting of Gag-S alone or combined with other SARS-CoV-2 components, namely Gag-S-Nucleocapsid (N), Gag-S-Matrix (M), Gag-S-Envelope (E), Gag-S-MEN, along with Gag alone were produced and processed by clarification, nuclease treatment, concentration by tangential flow filtration (TFF) and diafiltration. A pilot mouse study was performed to evaluate the immunogenicity of the Gag-S-VLPs through the measurement of the humoral and/or cellular responses against all the mentioned SARS-CoV-2 components. Antibody response to Spike was observed in all variants. The highest number of Spike-specific IFN-γ + T cells was detected with Gag-S-VLPs. No induction of antigen-specific cellular responses to M, N or E proteins were detected with any of the Gag-S, M, E/or N VLPs tested. Therefore, the Gag-S-VLP, by reason of consistently eliciting strong antigen-specific cellular and antibody responses, was selected for further evaluation. The purification process was improved by replacing the conventional centrifugation by serial microfiltration in the clarification step, followed by Spike-affinity chromatography to get concentrated VLPs with higher purity. Three different doses of Gag-S-VLP in conjunction with two adjuvants (Quil-A or AddaVax) were used to assess the dose-dependent antigen-specific cellular and antibody responses in mice. The Gag-S-VLP adjuvanted with Quil-A resulted in a stronger Spike-specific cellular response compared to that adjuvanted with AddaVax. A strong spike neutralisation activity was observed for all doses, independent of the adjuvant combination.


Subject(s)
COVID-19 , Vaccines, Virus-Like Particle , Animals , Mice , Adjuvants, Immunologic , COVID-19/prevention & control , Polysorbates , SARS-CoV-2
6.
Front Immunol ; 14: 1182556, 2023.
Article in English | MEDLINE | ID: mdl-37122746

ABSTRACT

Liposomes composed of sulfated lactosyl archaeol (SLA) have been shown to be a safe and effective vaccine adjuvant with a multitude of antigens in preclinical studies. In particular, SLA-adjuvanted SARS-CoV-2 subunit vaccines based on trimeric spike protein antigens were shown to be immunogenic and efficacious in mice and hamsters. With the continued emergence of SARS-CoV-2 variants, we sought to evaluate next-generation vaccine formulations with an updated antigenic identity. This was of particular interest for the widespread Omicron variant, given the abundance of mutations and structural changes observed within its spike protein compared to other variants. An updated version of our resistin-trimerized SmT1 corresponding to the B.1.1.529 variant was successfully generated in our Chinese Hamster Ovary (CHO) cell-based antigen production platform and characterized, revealing some differences in protein profile and ACE2 binding affinity as compared to reference strain-based SmT1. We next evaluated this Omicron-based spike antigen for its immunogenicity and ability to generate robust antigen-specific immune responses when paired with SLA liposomes or AddaS03 (a mimetic of the AS03 oil-in-water emulsion adjuvant system found in commercialized SARS-CoV-2 protein vaccines). Immunization of mice with vaccine formulations containing this updated antigen with either adjuvant stimulated neutralizing antibody responses favouring Omicron over the reference strain. Cell-mediated responses, which play an important role in the neutralization of intracellular infections, were induced to a much higher degree with the SLA adjuvant relative to the AddaS03-adjuvanted formulations. As such, updated vaccines that are better capable of targeting towards SARS-CoV-2 variants can be generated through an optimized combination of antigen and adjuvant components.


Subject(s)
Adjuvants, Vaccine , COVID-19 , Cricetinae , Animals , Mice , SARS-CoV-2 , Glycolipids , Sulfates , CHO Cells , Liposomes , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , Cricetulus , Immunity, Cellular , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Archaea , COVID-19 Vaccines
7.
Vaccines (Basel) ; 11(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37376432

ABSTRACT

Vaccines play an important role in maintaining human and animal health worldwide. There is continued demand for effective and safe adjuvants capable of enhancing antigen-specific responses to a target pathogen. Rabbit hemorrhagic disease virus (RHDV) is a highly contagious calicivirus that often induces high mortality rates in rabbits. Herein, we evaluated the activity of an experimental sulfated lactosyl archaeol (SLA) archaeosome adjuvant when incorporated in subunit vaccine formulations targeting RHDV. The subunit antigens consisted of RHDV-CRM197 peptide conjugates or recombinant RHDV2 VP60. SLA was able to enhance antigen-specific antibody titers and cellular responses in mice and rabbits. Three weeks following immunization, antigen-specific antibody levels in rabbits vaccinated with RHDV2 VP60 + SLA were significantly higher than those immunized with antigen alone, with geomean titers of 7393 vs. 117. In addition, the SLA-adjuvanted VP60-based formulations were highly efficacious in a rabbit RHDV2 challenge model with up to 87.5% animals surviving the viral challenge. These findings demonstrate the potential utility of SLA adjuvants in veterinary applications and highlight its activity in different types of mammalian species.

8.
J Med Chem ; 65(12): 8332-8344, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35658102

ABSTRACT

Archaeosomes composed of sulfated lactosyl archaeol (SLA) glycolipids from stereoisomerically pure archaeol (1) are vaccine adjuvants that can boost immunogenicity and vaccine efficacy in preclinical models. Herein, we report a new synthesis of 2,3-bis((3,7,11,15-tetramethylhexadecyl)oxy) propan-1-ol (3) by treating (±)-3-benzyloxy-1,2-propanediol with a mesylated phytol derivative through a double nucleophilic substitution reaction, followed by reductive debenzylation. Three SLA archaeosomes from archaeols of different chiral purities were prepared, and the effect of stereochemistry on their adjuvanticity toward ovalbumin was investigated. It was found that all SLA archaeosomes induced strong humoral and cell-mediated antigen-specific immune responses following immunization of C57BL/6NCrl mice, with no significant differences, irrespective of the chiral purities. The responses were comparable or better than those obtained using mimetics of approved adjuvants. The performance of SLA archaeosomes during immunization and their lack of dependence on the stereochemistry of archaeol points toward a promising, safe, scalable, and economically viable vaccine adjuvant system.


Subject(s)
Glycolipids , Liposomes , Adjuvants, Immunologic/pharmacology , Animals , Glycolipids/pharmacology , Mice , Mice, Inbred C57BL , Ovalbumin
9.
Sci Rep ; 12(1): 9772, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35697917

ABSTRACT

With the persistence of the SARS-CoV-2 pandemic and the emergence of novel variants, the development of novel vaccine formulations with enhanced immunogenicity profiles could help reduce disease burden in the future. Intranasally delivered vaccines offer a new modality to prevent SARS-CoV-2 infections through the induction of protective immune responses at the mucosal surface where viral entry occurs. Herein, we evaluated a novel protein subunit vaccine formulation containing a resistin-trimerized prefusion Spike antigen (SmT1v3) and a proteosome-based mucosal adjuvant (BDX301) formulated to enable intranasal immunization. In mice, the formulation induced robust antigen-specific IgG and IgA titers, in the blood and lungs, respectively. In addition, the formulations were highly efficacious in a hamster challenge model, reducing viral load and body weight loss. In both models, the serum antibodies had strong neutralizing activity, preventing the cellular binding of the viral Spike protein based on the ancestral reference strain, the Beta (B.1.351) and Delta (B.1.617.2) variants of concern. As such, this intranasal vaccine formulation warrants further development as a novel SARS-CoV-2 vaccine.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Adjuvants, Immunologic , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Cricetinae , Humans , Immunization , Mice , SARS-CoV-2
10.
NPJ Vaccines ; 7(1): 118, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36224247

ABSTRACT

Using our strongly immunogenic SmT1 SARS-CoV-2 spike antigen platform, we developed antigens based on the Beta & Delta variants of concern (VOC). These antigens elicited higher neutralizing antibody activity to the corresponding variant than comparable vaccine formulations based on the original reference strain, while a multivalent vaccine generated cross-neutralizing activity in all three variants. This suggests that while current vaccines may be effective at reducing severe disease to existing VOC, variant-specific antigens, whether in a mono- or multivalent vaccine, may be required to induce optimal immune responses and reduce infection against arising variants.

11.
Helicobacter ; 16(6): 459-67, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22059397

ABSTRACT

BACKGROUND: The outer core region of H. pylori lipopolysaccharide (LPS) contains α1,6-glucan previously shown to contribute to colonizing efficiency of a mouse stomach. The aim of the present study was to generate monoclonal antibodies (mAbs) specific for α1,6-glucan and characterize their binding properties and functional activity. MATERIALS AND METHODS: BALB/c mice were injected intraperitoneally with 10(8) formalin-fixed H. pylori O:3 0826::Kan cells 3× over 56 days to achieve significant titer. Anti-α1,6-glucan-producing hybridomas were screened by indirect ELISA using purified H. pylori O:3 0826::Kan LPS. One clone, 1C4F9, was selected for further characterization. The specificities of mAbs were determined by indirect and inhibition ELISA using structurally defined H. pylori LPS and synthetic oligosaccharides, and whole-cell indirect ELISA (WCE) of clinical isolates. They were further characterized by indirect immunofluorescent (IF) microscopy and their functional activity in vitro determined by serum bactericidal assays against wild-type and mutant strains of H. pylori. RESULTS: The generated anti-α1,6-glucan IgM, 1C4F9, has demonstrated an excellent specificity for the glucan chain containing 5 to 6 α1,6-linked glucose residues and showed surface accessibility by IF microscopy with H. pylori cells adherent to gastric adenocarcinoma cells monolayers. Of 38 isolates from Chile, 17 strains reacted with antiglucan mAbs in WCE (OD450 ≥ 0.2). Bactericidal activity was observed against selective wild-type and mutant H. pylori strains exhibiting OD450 values of ≥ 0.45 in WCE. CONCLUSIONS: Anti-α1,6-glucan mAbs could have potential application in typing and surveillance of H. pylori isolates as well as offer insights into structural requirements for the development of LPS-based vaccine against H. pylori infections.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Glucans/immunology , Lipopolysaccharides/immunology , Animals , Antibodies, Bacterial/isolation & purification , Antibodies, Bacterial/metabolism , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/metabolism , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique, Indirect , Glucans/metabolism , Lipopolysaccharides/metabolism , Mice , Mice, Inbred BALB C , Microbial Viability/drug effects , Microscopy, Fluorescence , Protein Binding
12.
Pharmaceutics ; 13(2)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540932

ABSTRACT

Archaeosomes, composed of sulfated lactosyl archaeol (SLA) glycolipids, have been proven to be an effective vaccine adjuvant in multiple preclinical models of infectious disease or cancer. SLA archaeosomes are a promising adjuvant candidate due to their ability to strongly stimulate both humoral and cytotoxic immune responses when simply admixed with an antigen. In the present study, we evaluated whether the adjuvant effects of SLA archaeosomes could be further enhanced when combined with other adjuvants. SLA archaeosomes were co-administered with five different Toll-like Receptor (TLR) agonists or the saponin QS-21 using ovalbumin as a model antigen in mice. Both humoral and cellular immune responses were greatly enhanced compared to either adjuvant alone when SLA archaeosomes were combined with either the TLR3 agonist poly(I:C) or the TLR9 agonist CpG. These results were also confirmed in a separate study using Hepatitis B surface antigen (HBsAg) and support the further evaluation of these adjuvant combinations.

13.
Pharmaceutics ; 13(2)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673382

ABSTRACT

Cancer remains a leading cause of morbidity and mortality worldwide. While novel treatments have improved survival outcomes for some patients, new treatment modalities/platforms are needed to combat a wider variety of tumor types. Cancer vaccines harness the power of the immune system to generate targeted tumor-specific immune responses. Liposomes composed of glycolipids derived from archaea (i.e., archaeosomes) have been shown to be potent adjuvants, inducing robust, long-lasting humoral and cell-mediated immune responses to a variety of antigens. Herein, we evaluated the ability of archaeosomes composed of sulfated lactosyl archaeol (SLA), a semi-synthetic archaeal glycolipid, to enhance the immunogenicity of a synthetic long peptide-based vaccine formulation containing the dominant CD8+ T cell epitope, SIINFEKL, from the weakly immunogenic model antigen ovalbumin. One advantage of immunizing with long peptides is the ability to include multiple epitopes, for example, the long peptide antigen was also designed to include the immediately adjacent CD4+ epitope, TEWTSSNVMEER. SLA archaeosomes were tested alone or in combination with the toll-like receptor 3 (TLR3) agonist Poly(I:C). Overall, SLA archaeosomes synergized strongly with Poly(I:C) to induce robust antigen-specific CD8+ T cell responses, which were highly functional in an in vivo cytolytic assay. Furthermore, immunization with this vaccine formulation suppressed tumor growth and extended mouse survival in a mouse melanoma tumor model. Overall, the combination of SLA archaeosomes and Poly(I:C) appears to be a promising adjuvant system when used along with long peptide-based antigens targeting cancer.

14.
Sci Rep ; 11(1): 21849, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34750472

ABSTRACT

The huge worldwide demand for vaccines targeting SARS-CoV-2 has necessitated the continued development of novel improved formulations capable of reducing the burden of the COVID-19 pandemic. Herein, we evaluated novel protein subunit vaccine formulations containing a resistin-trimerized spike antigen, SmT1. When combined with sulfated lactosyl archaeol (SLA) archaeosome adjuvant, formulations induced robust antigen-specific humoral and cellular immune responses in mice. Antibodies had strong neutralizing activity, preventing viral spike binding and viral infection. In addition, the formulations were highly efficacious in a hamster challenge model reducing viral load and body weight loss even after a single vaccination. The antigen-specific antibodies generated by our vaccine formulations had stronger neutralizing activity than human convalescent plasma, neutralizing the spike proteins of the B.1.1.7 and B.1.351 variants of concern. As such, our SmT1 antigen along with SLA archaeosome adjuvant comprise a promising platform for the development of efficacious protein subunit vaccine formulations for SARS-CoV-2.


Subject(s)
Adjuvants, Immunologic/chemistry , Antigens, Archaeal/chemistry , COVID-19 Vaccines/therapeutic use , Lipids/chemistry , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Body Weight , COVID-19/therapy , Chlorocebus aethiops , Cricetinae , Cytokines/metabolism , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunization, Passive , Mesocricetus , Mice , Mice, Inbred C57BL , Neutralization Tests , Peptides/chemistry , Protein Domains , SARS-CoV-2 , Toll-Like Receptors/immunology , Vero Cells , Viral Load , COVID-19 Serotherapy
15.
Int J Pharm ; 561: 187-196, 2019 Apr 20.
Article in English | MEDLINE | ID: mdl-30836154

ABSTRACT

Archaeosomes are liposomes composed of natural or synthetic archaeal lipids that can be used as adjuvants to induce strong long-lasting humoral and cell-mediated immune responses against entrapped antigen. However, the entrapment efficiency of antigen within archaeosomes constituted using standard liposome forming methodology is often only 5-40%. In this study, we evaluated different formulation methods using a simple semi-synthetic archaeal lipid (SLA, sulfated lactosyl archaeol) and two different antigens, ovalbumin (OVA) and hepatitis B surface antigen (HBsAg). Antigen was entrapped within archaeosomes using the conventional thin film hydration-rehydration method with or without removal of non-entrapped antigen, or pre-formed empty archaeosomes were simply admixed with an antigen solution. Physicochemical characteristics were determined (size distribution, zeta potential, vesicle morphology and lamellarity), as well as location of antigen relative to bilayer using cryogenic transmission electron microscopy (TEM). We demonstrate that antigen (OVA or HBsAg) formulated with SLA lipid adjuvants using all the different methodologies resulted in a strong antigen-specific immune response. Nevertheless, the advantage of using a drug substance process that comprises of simply admixing antigen with pre-formed empty archaeosomes, represents a simple, efficient and antigenic dose-sparing formulation for adjuvanting and delivering vaccine antigens.


Subject(s)
Adjuvants, Immunologic/chemistry , Antigens, Archaeal/immunology , Archaea/immunology , Drug Carriers/chemistry , Lipids/chemistry , Liposomes/chemistry , Vaccines/immunology , Adjuvants, Immunologic/pharmacology , Animals , Antibodies/blood , Cell Count , Chemical Phenomena , Female , Hepatitis B Surface Antigens/immunology , Immunity, Cellular/drug effects , Interferon-gamma/metabolism , Liposomes/ultrastructure , Mice , Ovalbumin/immunology , Spleen/metabolism , Vaccines/chemistry
16.
Vaccines (Basel) ; 7(4)2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31816920

ABSTRACT

Infection by Hepatitis C virus (HCV) can lead to liver cirrhosis/hepatocellular carcinoma and remains a major cause of serious disease morbidity and mortality worldwide. However, current treatment regimens remain inaccessible to most patients, particularly in developing countries, and, therefore, the development of a novel vaccine capable of protecting subjects from chronic infection by HCV could greatly reduce the rates of HCV infection, subsequent liver pathogenesis, and in some cases death. Herein, we evaluated two different semi-synthetic archaeosome formulations as an adjuvant to the E1/E2 HCV envelope protein in a murine model and compared antigen-specific humoral (levels of anti-E1/E2 IgG and HCV pseudoparticle neutralization) and cellular responses (numbers of antigen-specific cytokine-producing T cells) to those generated with adjuvant formulations composed of mimetics of commercial adjuvants including a squalene oil-in-water emulsion, aluminum hydroxide/monophosphoryl lipid A (MPLA) and liposome/MPLA/QS-21. In addition, we measured the longevity of these responses, tracking humoral, and cellular responses up to 6 months following vaccination. Overall, we show that the strength and longevity of anti-HCV responses can be influenced by adjuvant selection. In particular, a simple admixed sulfated S-lactosylarchaeol (SLA) archaeosome formulation generated strong levels of HCV neutralizing antibodies and polyfunctional antigen-specific CD4 T cells producing multiple cytokines such as IFN-γ, TNF-α, and IL-2. While liposome/MPLA/QS-21 as adjuvant generated superior cellular responses, the SLA E1/E2 admixed formulation was superior or equivalent to the other tested formulations in all immune parameters tested.

17.
Vaccine ; 37(47): 7108-7116, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31383490

ABSTRACT

Vaccine induced responses are often weaker in those individuals most susceptible to infection, namely the very young and the elderly, highlighting the need for safe and effective vaccine adjuvants. Herein we evaluated different archaeosome formulations as an adjuvant to the H1N1 influenza hemagglutinin protein and compared immune responses (anti-HA IgG and hemagglutination inhibition assay titers) as well as protection to an influenza A virus (strainA/PuertoRico/8/1934H1N1)homologous challenge to those generated using a squalene-based oil-in-water nano-emulsion, AddaVax™ in a murine model. The impact of age (young adult vs aged) on vaccine induced immune responses as well as the protection in pups due to the transfer of maternal antibodies was measured. Overall, we show that archaeal lipid based adjuvants can induce potent anti-HA responses in young and aged mice that can also be passed from vaccinated mothers to pups. Furthermore, young and aged mice immunized with archaeal lipid adjuvants as well as pups from immunized mothers were protected from challenge with influenza. In addition, we show that a simple admixed archaeosome formulation composed of a single sulfated glycolipid namely sulfated lactosylarchaeol (SLA; 6'-sulfate-ß-D-Galp-(1,4)-ß-D-Glcp-(1,1)-archaeol) can give equal or better protection compared to AddaVax™ or the traditional antigen-encapsulated archaeosome formulations.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Archaea/immunology , Glycolipids/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Animals , Antibodies, Viral/immunology , Female , Hemagglutination Inhibition Tests/methods , Immunization/methods , Immunization, Passive/methods , Influenza A Virus, H1N1 Subtype/immunology , Mice , Mice, Inbred BALB C , Squalene/immunology , Vaccination/methods
18.
J Med Microbiol ; 57(Pt 5): 585-591, 2008 May.
Article in English | MEDLINE | ID: mdl-18436591

ABSTRACT

Previous studies have shown that the LPS of Helicobacter pylori isolated from North American and European hosts predominantly expresses type 2 Lewis x (Le(x)) and Le(y) epitopes, whilst the LPS from Asian strains has the capacity to express type 1 Le(a) and Le(b) structures. The aim of this study was to evaluate the expression of Le antigens and the cytotoxin-associated antigen (CagA) by H. pylori isolates from Chile. A total of 38 isolates were screened. The expression of Le antigens and CagA was determined by whole-cell indirect ELISA, using commercially available monoclonal anti-Le and polyclonal anti-CagA antibodies. LPS profiles of H. pylori isolates were assessed by gel electrophoresis and Western blotting. Expression of Le(x) and/or Le(y) epitopes was confirmed in 32/38 isolates (84 %), whilst 9/38 isolates (24 %) expressed type 1 Le(b) blood group determinants, in addition to type 2 Le(x) and Le(y) structures. Six strains (16 %) were non-typeable. The majority of H. pylori strains examined were CagA-positive (83.3 %).


Subject(s)
Helicobacter pylori/genetics , Helicobacter pylori/immunology , Lewis Blood Group Antigens/metabolism , Lewis X Antigen/metabolism , Lipopolysaccharides/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Chile/epidemiology , Female , Gastrointestinal Diseases/epidemiology , Gastrointestinal Diseases/microbiology , Gene Expression Regulation, Bacterial/physiology , Helicobacter Infections/microbiology , Humans , Lewis Blood Group Antigens/genetics , Lewis X Antigen/genetics , Male , Middle Aged , Oligosaccharides/genetics , Oligosaccharides/metabolism
19.
Carbohydr Res ; 456: 19-23, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29247909

ABSTRACT

Structural characterization of the lipopolysaccharide (LPS) from a nontypeable Helicobacter pylori strain PJ1 and two corresponding mutants, PJ1 HP1283:cam and PJ1 HP1284:cam, was performed using a combination of NMR and mass spectrometric techniques. It resulted in the core structure that differed significantly from the one proposed previously. Overall architecture of PJ1 LPS was found to be consistent with a structural model described for several other H. pylori strains. It contained a polymer of d-glycero-d-manno-heptose (dd-Hep) as the O-chain component, linked to α-1,6-glucan through a dd-Hep oligosaccharide. H. pylori PJ1 HP1283:cam LPS was missing dd-heptan, terminating with an α-1,6-glucan chain containing 5-13 glucose residues. LPS of strain PJ1 HP1284:cam was missing dd-Hep from the core and had ß-GlcNAc attached directly to O-3 of the inner-core ld-Hep residue. To investigate the role of dd-heptan in protective immunity, delipidated LPS (dLPS) from strain PJ1 was conjugated to tetanus toxoid (TT) and immunological properties of the resultant glycoconjugate dLPS(PJ1)-TT determined. The dLPS(PJ1)-TT conjugate was immunogenic in mice and rabbits and induced specific and cross-reactive functional antibodies against homologous and heterologous strains of H. pylori. Whole cell indirect ELISA performed on a selected number of H. pylori isolates confirmed that the immune response correlated with the presence of α-1,6-glucan and was not augmented by the dd-Hep content of these strains.


Subject(s)
Glycoconjugates/chemistry , Glycoconjugates/immunology , Helicobacter pylori/chemistry , Helicobacter pylori/immunology , Lipopolysaccharides/chemistry , Lipopolysaccharides/immunology , Animals , Bacterial Vaccines/immunology , Mice , Rabbits
20.
PLoS One ; 13(12): e0208067, 2018.
Article in English | MEDLINE | ID: mdl-30513093

ABSTRACT

Archaeosomes are liposomes traditionally comprised of total polar lipids (TPL) or semi-synthetic glycerolipids of ether-linked isoprenoid phytanyl cores with varied glyco- and amino-head groups. As adjuvants, they induce robust, long-lasting humoral and cell-mediated immune responses and enhance protection in murine models of infectious disease and cancer. Traditional total polar lipid (TPL) archaeosome formulations are relatively complex and first generation semi-synthetic archaeosomes involve many synthetic steps to arrive at the final desired glycolipid composition. We have developed a novel archaeosome formulation comprising a sulfated disaccharide group covalently linked to the free sn-1 hydroxyl backbone of an archaeal core lipid (sulfated S-lactosylarchaeol, SLA) that can be more readily synthesized yet retains strong immunostimulatory activity for induction of cell-mediated immunity following systemic immunization. Herein, we have evaluated the immunostimulatory effects of SLA archaeosomes when used as adjuvant with ovalbumin (OVA) and hepatitis B surface antigen (HBsAg) and compared this to various other adjuvants including TLR3/4/9 agonists, oil-in-water and water-in-oil emulsions and aluminum hydroxide. Overall, we found that semi-synthetic sulfated glycolipid archaeosomes induce strong Ag-specific IgG titers and CD8 T cells to both antigens. In addition, they induce the expression of a number of cytokines/chemokines including IL-6, G-CSF, KC & MIP-2. SLA archaeosome formulations demonstrated strong adjuvant activity, superior to many of the other tested adjuvants.


Subject(s)
Adjuvants, Immunologic , Glyceryl Ethers/immunology , Glycolipids/immunology , Halobacterium salinarum/chemistry , Immunity, Cellular/drug effects , Liposomes/immunology , Vaccines/immunology , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cytokines/immunology , Cytokines/metabolism , Female , Glyceryl Ethers/administration & dosage , Glyceryl Ethers/chemistry , Glycolipids/administration & dosage , Glycolipids/chemistry , Hepatitis B Surface Antigens/administration & dosage , Hepatitis B Surface Antigens/immunology , Immunogenicity, Vaccine , Immunoglobulin G/blood , Immunoglobulin G/immunology , Liposomes/administration & dosage , Liposomes/chemistry , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Animal , Ovalbumin , Serologic Tests , Vaccines/administration & dosage , Vaccines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL