Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Proc Natl Acad Sci U S A ; 120(32): e2301689120, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37523564

ABSTRACT

The diversity of COVID-19 disease in otherwise healthy people, from seemingly asymptomatic infection to severe life-threatening disease, is not clearly understood. We passaged a naturally occurring near-ancestral SARS-CoV-2 variant, capable of infecting wild-type mice, and identified viral genomic mutations coinciding with the acquisition of severe disease in young adult mice and lethality in aged animals. Transcriptomic analysis of lung tissues from mice with severe disease elucidated a host antiviral response dominated mainly by interferon and IL-6 pathway activation in young mice, while in aged animals, a fatal outcome was dominated by TNF and TGF-ß signaling. Congruent with our pathway analysis, we showed that young TNF-deficient mice had mild disease compared to controls and aged TNF-deficient animals were more likely to survive infection. Emerging clinical correlates of disease are consistent with our preclinical studies, and our model may provide value in defining aberrant host responses that are causative of severe COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Young Adult , Humans , Mice , Animals , Aged , SARS-CoV-2/genetics , COVID-19/genetics , Virulence/genetics , Mutation , Disease Models, Animal
2.
Retrovirology ; 15(1): 36, 2018 05 11.
Article in English | MEDLINE | ID: mdl-29751762

ABSTRACT

BACKGROUND: Different classes of latency reversing agents (LRAs) are being evaluated to measure their effects in reactivating HIV replication from latently infected cells. A limited number of studies have demonstrated additive effects of LRAs with the viral protein Tat in initiating transcription, but less is known about how LRAs interact with Tat, particularly through basic residues that may be post-translationally modified to alter the behaviour of Tat for processive transcription and co-transcriptional RNA processing. RESULTS: Here we show that various lysine and arginine mutations reduce the capacity of Tat to induce both transcription and mRNA splicing. The lysine 28 and lysine 50 residues of Tat, or the acetylation and methylation modifications of these basic amino acids, were essential for Tat transcriptional control, and also for the proviral expression effects elicited by histone deacetylase inhibitors (HDACi) or the bromodomain inhibitor JQ1. We also found that JQ1 was the only LRA tested that could induce HIV mRNA splicing in the absence of Tat, or rescue splicing for Tat lysine mutants in a BRD4-dependent manner. CONCLUSIONS: Our data provide evidence that Tat activities in both co-transcriptional RNA processing together with transcriptional initiation and processivity are crucial during reactivation of latent HIV infection. The HDACi and JQ1 LRAs act with Tat to increase transcription, but JQ1 also enables post-transcriptional mRNA splicing. Tat residues K28 and K50, or their modifications through acetylation or methylation, are critical for LRAs that function in conjunction with Tat.


Subject(s)
HIV Infections/virology , HIV-1/drug effects , HIV-1/physiology , Virus Latency/drug effects , tat Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism , Amino Acid Substitution , Anti-HIV Agents/pharmacology , Azepines/pharmacology , Cell Cycle Proteins , Gene Expression Regulation, Viral/drug effects , HIV Infections/metabolism , Histone Deacetylase Inhibitors/pharmacology , Humans , Mutation , Nuclear Proteins/metabolism , Protein Processing, Post-Translational , RNA Splicing , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Triazoles/pharmacology , Virus Activation/drug effects , Virus Replication/drug effects
3.
JCI Insight ; 6(16)2021 08 23.
Article in English | MEDLINE | ID: mdl-34251356

ABSTRACT

The SARS-CoV-2 receptor binding domain (RBD) is both the principal target of neutralizing antibodies and one of the most rapidly evolving domains, which can result in the emergence of immune escape mutations, limiting the effectiveness of vaccines and antibody therapeutics. To facilitate surveillance, we developed a rapid, high-throughput, multiplex assay able to assess the inhibitory response of antibodies to 24 RBD natural variants simultaneously. We demonstrate how this assay can be implemented as a rapid surrogate assay for functional cell-based serological methods to measure the SARS-CoV-2 neutralizing capacity of antibodies at the angiotensin-converting enzyme 2-RBD (ACE2-RBD) interface. We describe the enhanced affinity of RBD variants N439K, S477N, Q493L, S494P, and N501Y to the ACE2 receptor and demonstrate the ability of this assay to bridge a major gap for SARS-CoV-2 research, informing selection of complementary monoclonal antibody candidates and the rapid identification of immune escape to emerging RBD variants following vaccination or natural infection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , High-Throughput Screening Assays , Humans , Immune Evasion , Mutation
4.
J Med Chem ; 62(10): 5148-5175, 2019 05 23.
Article in English | MEDLINE | ID: mdl-30973727

ABSTRACT

The persistent reservoir of cells latently infected with human immunodeficiency virus (HIV)-integrated proviral DNA necessitates lifelong suppressive antiretroviral therapy (ART). Epigenetic targeted compounds have shown promise as potential latency-reversing agents; however, these drugs have undesirable toxicity and lack specificity for HIV. We utilized a novel HEK293-derived FlpIn dual-reporter cell line, which quantifies specific HIV provirus reactivation (LTR promoter) relative to nonspecific host cell gene expression (CMV promoter), to identify the 5-substituted 2-acylaminothiazole hit class. Here, we describe the optimization of the hit class, defining the functionality necessary for HIV gene activation and for improving in vitro metabolism and solubility. The optimized compounds displayed enhanced HIV gene expression in HEK293 and Jurkat 10.6 latency cellular models and increased unspliced HIV RNA in resting CD4+ T cells isolated from HIV-infected individuals on ART, demonstrating the potential of the 2-acylaminothiazole class as latency-reversing agents.


Subject(s)
Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacology , HIV-1/drug effects , Thiazoles/chemical synthesis , Thiazoles/pharmacology , Virus Latency/drug effects , tat Gene Products, Human Immunodeficiency Virus/biosynthesis , tat Gene Products, Human Immunodeficiency Virus/drug effects , Animals , Anti-HIV Agents/pharmacokinetics , Antiretroviral Therapy, Highly Active/methods , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , Drug Design , Gene Expression Regulation, Viral/drug effects , HEK293 Cells , Humans , Jurkat Cells , Mice , Microsomes, Liver , RNA, Viral/biosynthesis , RNA, Viral/drug effects , RNA, Viral/genetics , Structure-Activity Relationship , Thiazoles/pharmacokinetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL