Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
Add more filters

Publication year range
1.
Neuroimage ; 286: 120515, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38216105

ABSTRACT

Many sensory brain areas are organized as topographic maps where neural response preferences change gradually across the cortical surface. Within association cortices, 7-Tesla fMRI and neural model-based analyses have also revealed many topographic maps for quantities like numerosity and event timing, often in similar locations. Numerical and temporal quantity estimations also show behavioral similarities and even interactions. For example, the duration of high-numerosity displays is perceived as longer than that of low-numerosity displays. Such interactions are often ascribed to a generalized magnitude system with shared neural responses across quantities. Anterior quantity responses are more closely linked to behavior. Here, we investigate whether common quantity representations hierarchically emerge by asking whether numerosity and timing maps become increasingly closely related in their overlap, response preferences, and topography. While the earliest quantity maps do not overlap, more superior maps overlap increasingly. In these overlapping areas, some intraparietal maps have consistently correlated numerosity and timing preferences, and some maps have consistent angles between the topographic progressions of numerosity and timing preferences. However, neither of these relationships increases hierarchically like the amount of overlap does. Therefore, responses to different quantities are initially derived separately, then progressively brought together, without generally becoming a common representation. Bringing together distinct responses to different quantities may underlie behavioral interactions and allow shared access to comparison and action planning systems.


Subject(s)
Brain Mapping , Brain , Humans , Photic Stimulation , Magnetic Resonance Imaging , Cerebral Cortex
2.
Int Ophthalmol ; 44(1): 401, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365478

ABSTRACT

PURPOSE: To investigate the clinical outcomes of canaloplasty performed with the iTrack microcatheter (Nova Eye Medical, Fremont, USA) as a standalone procedure and in combination with phacoemulsification in patients with primary angle-closure glaucoma (PACG). METHODS: A single-center, retrospective case series of eyes undergoing canaloplasty via an ab-interno technique with a diagnosis of PACG based on gonioscopy findings (Shaffer grading). Patients were excluded if they had previously undergone a glaucoma procedure other than Laser Peripheral Iridotomy (LPI). Eyes were grouped by glaucoma severity based on mean deviation preoperative values. Outcome measures included intraocular pressure (IOP) and number of glaucoma medications. RESULTS: Sixty eyes (9 canaloplasty-standalone, pseudophakic, and 51 canaloplasty + phaco) were eligible. The mean baseline IOP was 21.9 ± 7.3 mmHg and number of glaucoma medications was 1.95 ± 1.4. At the latest follow-up (mean 26 ± 9.2 months), they were reduced to 14.6 ± 3.7 mmHg (p < 0.001) and 0.96 ± 1.2 (p < 0.001). IOP reduction was statistically significant when canaloplasty was performed as a standalone procedure (baseline 22.78 ± 6.72 vs 17.00 ± 3.42 at the latest follow-up) or combined with phacoemulsification (21.75 ± 7.43 vs 14.21 ± 3.66) or if canaloplasty was performed in mild (20.8 ± 4.93 vs 15.5 ± 3.63), moderate (21.9 ± 8.58 vs 13.9 ± 3.90) or severe (23.5 ± 11.3 vs 12.4 ± 3.20) glaucoma eyes, with no difference between the groups postoperatively. Medication reduction was significant when canaloplasty was performed in combination with phacoemulsification and in mild glaucoma eyes. No serious intraoperative or postoperative complications were reported. CONCLUSION: Canaloplasty via an ab-interno surgical technique, performed as standalone or combined with phacoemulsification, is a safe and clinically effective treatment in primary angle closure glaucoma patients up to 2 years.


Subject(s)
Filtering Surgery , Glaucoma, Angle-Closure , Gonioscopy , Intraocular Pressure , Phacoemulsification , Humans , Glaucoma, Angle-Closure/surgery , Glaucoma, Angle-Closure/physiopathology , Retrospective Studies , Male , Female , Aged , Intraocular Pressure/physiology , Filtering Surgery/methods , Phacoemulsification/methods , Middle Aged , Visual Acuity , Aged, 80 and over , Treatment Outcome , Follow-Up Studies
3.
Hum Brain Mapp ; 44(5): 2050-2061, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36637226

ABSTRACT

Perception of dynamic scenes in our environment results from the evaluation of visual features such as the fundamental spatial and temporal frequency components of a moving object. The ratio between these two components represents the object's speed of motion. The human middle temporal cortex hMT+ has a crucial biological role in the direct encoding of object speed. However, the link between hMT+ speed encoding and the spatiotemporal frequency components of a moving object is still under explored. Here, we recorded high resolution 7T blood oxygen level-dependent BOLD responses to different visual motion stimuli as a function of their fundamental spatial and temporal frequency components. We fitted each hMT+ BOLD response with a 2D Gaussian model allowing for two different speed encoding mechanisms: (1) distinct and independent selectivity for the spatial and temporal frequencies of the visual motion stimuli; (2) pure tuning for the speed of motion. We show that both mechanisms occur but in different neuronal groups within hMT+, with the largest subregion of the complex showing separable tuning for the spatial and temporal frequency of the visual stimuli. Both mechanisms were highly reproducible within participants, reconciling single cell recordings from MT in animals that have showed both encoding mechanisms. Our findings confirm that a more complex process is involved in the perception of speed than initially thought and suggest that hMT+ plays a primary role in the evaluation of the spatial features of the moving visual input.


Subject(s)
Motion Perception , Animals , Humans , Motion Perception/physiology , Magnetic Resonance Imaging , Photic Stimulation/methods , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiology , Neurons/physiology
4.
Microb Ecol ; 85(4): 1202-1214, 2023 May.
Article in English | MEDLINE | ID: mdl-35378620

ABSTRACT

Plastics are accumulating in the world's oceans, while ocean waters are becoming acidified by increased CO2. We compared metagenome of biofilms on tethered plastic bottles in subtidal waters off Japan naturally enriched in CO2, compared to normal ambient CO2 levels. Extending from an earlier amplicon study of bacteria, we used metagenomics to provide direct insights into changes in the full range of functional genes and the entire taxonomic tree of life in the context of the changing plastisphere. We found changes in the taxonomic community composition of all branches of life. This included a large increase in diatom relative abundance across the treatments but a decrease in diatom diversity. Network complexity among families decreased with acidification, showing overall simplification of biofilm integration. With acidification, there was decreased prevalence of genes associated with cell-cell interactions and antibiotic resistance, decreased detoxification genes, and increased stress tolerance genes. There were few nutrient cycling gene changes, suggesting that the role of plastisphere biofilms in nutrient processes within an acidified ocean may not change greatly. Our results suggest that as ocean CO2 increases, the plastisphere will undergo broad-ranging changes in both functional and taxonomic composition, especially the ecologically important diatom group, with possible wider implications for ocean ecology.


Subject(s)
Diatoms , Seawater , Humans , Plastics , Hydrogen-Ion Concentration , Ocean Acidification , Carbon Dioxide , Biofilms , Diatoms/genetics
5.
Neuroimage ; 258: 119366, 2022 09.
Article in English | MEDLINE | ID: mdl-35690255

ABSTRACT

Perception of sub-second auditory event timing supports multisensory integration, and speech and music perception and production. Neural populations tuned for the timing (duration and rate) of visual events were recently described in several human extrastriate visual areas. Here we ask whether the brain also contains neural populations tuned for auditory event timing, and whether these are shared with visual timing. Using 7T fMRI, we measured responses to white noise bursts of changing duration and rate. We analyzed these responses using neural response models describing different parametric relationships between event timing and neural response amplitude. This revealed auditory timing-tuned responses in the primary auditory cortex, and auditory association areas of the belt, parabelt and premotor cortex. While these areas also showed tonotopic tuning for auditory pitch, pitch and timing preferences were not consistently correlated. Auditory timing-tuned response functions differed between these areas, though without clear hierarchical integration of responses. The similarity of auditory and visual timing tuned responses, together with the lack of overlap between the areas showing these responses for each modality, suggests modality-specific responses to event timing are computed similarly but from different sensory inputs, and then transformed differently to suit the needs of each modality.


Subject(s)
Auditory Cortex , Music , Acoustic Stimulation , Auditory Cortex/physiology , Auditory Perception/physiology , Brain Mapping , Humans , Magnetic Resonance Imaging
6.
Glob Chang Biol ; 28(2): 362-374, 2022 01.
Article in English | MEDLINE | ID: mdl-34689395

ABSTRACT

Ocean acidification (OA) is a major threat to the persistence of biogenic reefs throughout the world's ocean. Coralline algae are comprised of high magnesium calcite and have long been considered one of the most susceptible taxa to the negative impacts of OA. We summarize these impacts and explore the causes of variability in coralline algal responses using a review/qualitative assessment of all relevant literature, meta-analysis, quantitative assessment of critical responses, and a discussion of physiological mechanisms and directions for future research. We find that most coralline algae experienced reduced abundance, calcification rates, recruitment rates, and declines in pH within the site of calcification in laboratory experiments simulating OA or at naturally elevated CO2 sites. There were no other consistent physiological responses of coralline algae to simulated OA (e.g., photo-physiology, mineralogy, and survival). Calcification/growth was the most frequently measured parameters in coralline algal OA research, and our meta-analyses revealed greater declines in seawater pH were associated with significant decreases in calcification in adults and similar but nonsignificant trends for juveniles. Adults from the family Mesophyllumaceae also tended to be more robust to OA, though there was insufficient data to test similar trends for juveniles. OA was the dominant driver in the majority of laboratory experiments where other local or global drivers were assessed. The interaction between OA and any other single driver was often additive, though factors that changed pH at the surface of coralline algae (light, water motion, epiphytes) acted antagonistically or synergistically with OA more than any other drivers. With advances in experimental design and methodological techniques, we now understand that the physiology of coralline algal calcification largely dictates their responses to OA. However, significant challenges still remain, including improving the geographic and life-history spread of research effort and a need for holistic assessments of physiology.


Subject(s)
Rhodophyta , Seawater , Calcification, Physiologic , Hydrogen-Ion Concentration , Oceans and Seas
7.
Zoolog Sci ; 39(1): 41-51, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35106992

ABSTRACT

Japan has many coastal carbon dioxide seeps as it is one of the most volcanically active parts of the world. These shallow seeps do not have the spectacular aggregations of specialist fauna seen in deep-sea vent systems but they do have gradients in seawater carbonate chemistry that are useful as natural analogues of the effects of ocean acidification on marine biodiversity, ecosystem function and fisheries. Here, we compare macroinvertebrate diversity and abundance on rocky habitats at ambient (mean ≤ 410 µatm) and high (mean 971-1484 µatm) levels of seawater pCO2 in the warm-temperate region of Japan, avoiding areas with toxic sulphur or warm-water conditions. We show that although 70% of intertidal taxa and 40% of shallow subtidal taxa were able to tolerate the high CO2 conditions, there was a marked reduction in the abundance of corals, bivalves and gastropods in acidified conditions. A narrower range of filter feeders, grazers, detritivores, scavengers and carnivores were present at high CO2 resulting in a simplified coastal system that was unable to retain the high standing stocks of marine carbon biomass found in ambient conditions. It is clear that cuts in CO2 emissions would reduce the risks of climate change and ocean acidification impacts on marine biodiversity, shellfish production and biomass in the rocky coastal shores of this region.


Subject(s)
Ecosystem , Seawater , Animals , Carbon Dioxide/analysis , Hydrogen-Ion Concentration , Invertebrates , Japan
8.
Neuroimage ; 232: 117909, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33652148

ABSTRACT

Humans and animals rely on accurate object size perception to guide behavior. Object size is judged from visual input, but the relationship between an object's retinal size and its real-world size varies with distance. Humans perceive object sizes to be relatively constant when retinal size changes. Such size constancy compensates for the variable relationship between retinal size and real-world size, using the context of recent retinal sizes of the same object to bias perception towards its likely real-world size. We therefore hypothesized that object size perception may be affected by the range of recently viewed object sizes, attracting perceived object sizes towards recently viewed sizes. We demonstrate two systematic biases: a central tendency attracting perceived size towards the average size across all trials, and a serial dependence attracting perceived size towards the size presented on the previous trial. We recently described topographic object size maps in the human parietal cortex. We therefore hypothesized that neural representations of object size here would be attracted towards recently viewed sizes. We used ultra-high-field (7T) functional MRI and population receptive field modeling to compare object size representations measured with small (0.05-1.4°diameter) and large objects sizes (0.1-2.8°). We found that parietal object size preferences and tuning widths follow this presented range, but change less than presented object sizes. Therefore, perception and neural representation of object size are attracted towards recently viewed sizes. This context-dependent object size representation reveals effects on neural response preferences that may underlie context dependence of object size perception.


Subject(s)
Magnetic Resonance Imaging/methods , Parietal Lobe/diagnostic imaging , Parietal Lobe/physiology , Photic Stimulation/methods , Size Perception/physiology , Adolescent , Adult , Female , Humans , Male , Psychophysics , Young Adult
9.
Neuroimage ; 229: 117794, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33497778

ABSTRACT

Perceiving numerosity, i.e. the set size of a group of items, is an evolutionarily preserved ability found in humans and animals. A useful method to infer the neural underpinnings of a given perceptual property is sensory adaptation. Like other primary perceptual attributes, numerosity is susceptible to adaptation. Recently, we have shown numerosity-selective neural populations with a topographic organization in the human brain. Here, we investigated whether numerosity adaptation can affect the numerosity selectivity of these populations using ultra-high field (7 Tesla) functional magnetic resonance imaging (fMRI). Participants viewed stimuli of changing numerosity (1 to 7 dots), which allowed the mapping of numerosity selectivity. We interleaved a low or high numerosity adapter stimulus with these mapping stimuli, repeatedly presenting 1 or 20 dots respectively to adapt the numerosity-selective neural populations. We analyzed the responses using custom-build population receptive field neural models of numerosity encoding and compared estimated numerosity preferences between adaptation conditions. We replicated our previous studies where we found several topographic maps of numerosity-selective responses. We found that overall, numerosity adaptation altered the preferred numerosities within the numerosity maps, resulting in predominantly attractive biases towards the numerosity of the adapter. The differential biases could be explained by the difference between the unadapted preferred numerosity and the numerosity of the adapter, with attractive biases being observed with higher difference. The results could link perceptual numerosity adaptation effects to changes in neural numerosity selectivity.


Subject(s)
Adaptation, Physiological/physiology , Brain/diagnostic imaging , Brain/physiology , Nerve Net/diagnostic imaging , Nerve Net/physiology , Photic Stimulation/methods , Adult , Female , Humans , Male , Middle Aged
10.
Glob Chang Biol ; 27(10): 2174-2187, 2021 May.
Article in English | MEDLINE | ID: mdl-33423359

ABSTRACT

Long-term exposure to CO2 -enriched waters can considerably alter marine biological community development, often resulting in simplified systems dominated by turf algae that possess reduced biodiversity and low ecological complexity. Current understanding of the underlying processes by which ocean acidification alters biological community development and stability remains limited, making the management of such shifts problematic. Here, we deployed recruitment tiles in reference (pHT 8.137 ± 0.056 SD) and CO2 -enriched conditions (pHT 7.788 ± 0.105 SD) at a volcanic CO2 seep in Japan to assess the underlying processes and patterns of algal community development. We assessed (i) algal community succession in two different seasons (Cooler months: January-July, and warmer months: July-January), (ii) the effects of initial community composition on subsequent community succession (by reciprocally transplanting preestablished communities for a further 6 months), and (iii) the community production of resulting communities, to assess how their functioning was altered (following 12 months recruitment). Settlement tiles became dominated by turf algae under CO2 -enrichment and had lower biomass, diversity and complexity, a pattern consistent across seasons. This locked the community in a species-poor early successional stage. In terms of community functioning, the elevated pCO2 community had greater net community production, but this did not result in increased algal community cover, biomass, biodiversity or structural complexity. Taken together, this shows that both new and established communities become simplified by rising CO2 levels. Our transplant of preestablished communities from enriched CO2 to reference conditions demonstrated their high resilience, since they became indistinguishable from communities maintained entirely in reference conditions. This shows that meaningful reductions in pCO2 can enable the recovery of algal communities. By understanding the ecological processes responsible for driving shifts in community composition, we can better assess how communities are likely to be altered by ocean acidification.


Subject(s)
Carbon Dioxide , Seawater , Carbon Dioxide/analysis , Ecosystem , Hydrogen-Ion Concentration , Japan , Oceans and Seas
11.
Glob Chang Biol ; 27(19): 4771-4784, 2021 10.
Article in English | MEDLINE | ID: mdl-34268836

ABSTRACT

Ocean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed "tropicalization". A lack of field research into the combined effects of warming and ocean acidification means there is a gap in our ability to understand and plan for changes in coastal ecosystems. Here, we focus on the tropicalization trajectory of temperate marine ecosystems becoming coral-dominated systems. We conducted field surveys and in situ transplants at natural analogues for present and future conditions under (i) ocean warming and (ii) both ocean warming and acidification at a transition zone between kelp and coral-dominated ecosystems. We show that increased herbivory by warm-water fishes exacerbates kelp forest loss and that ocean acidification negates any benefits of warming for range extending tropical corals growth and physiology at temperate latitudes. Our data show that, as the combined effects of ocean acidification and warming ratchet up, marine coastal ecosystems lose kelp forests but do not gain scleractinian corals. Ocean acidification plus warming leads to overall habitat loss and a shift to simple turf-dominated ecosystems, rather than the complex coral-dominated tropicalized systems often seen with warming alone. Simplification of marine habitats by increased CO2 levels cascades through the ecosystem and could have severe consequences for the provision of goods and services.


Subject(s)
Ecosystem , Seawater , Animals , Aquatic Organisms , Coral Reefs , Hydrogen-Ion Concentration
12.
Glob Chang Biol ; 27(19): 4785-4798, 2021 10.
Article in English | MEDLINE | ID: mdl-34268846

ABSTRACT

Calcified coralline algae are ecologically important in rocky habitats in the marine photic zone worldwide and there is growing concern that ocean acidification will severely impact them. Laboratory studies of these algae in simulated ocean acidification conditions have revealed wide variability in growth, photosynthesis and calcification responses, making it difficult to assess their future biodiversity, abundance and contribution to ecosystem function. Here, we apply molecular systematic tools to assess the impact of natural gradients in seawater carbonate chemistry on the biodiversity of coralline algae in the Mediterranean and the NW Pacific, link this to their evolutionary history and evaluate their potential future biodiversity and abundance. We found a decrease in the taxonomic diversity of coralline algae with increasing acidification with more than half of the species lost in high pCO2 conditions. Sporolithales is the oldest order (Lower Cretaceous) and diversified when ocean chemistry favoured low Mg calcite deposition; it is less diverse today and was the most sensitive to ocean acidification. Corallinales were also reduced in cover and diversity but several species survived at high pCO2 ; it is the most recent order of coralline algae and originated when ocean chemistry favoured aragonite and high Mg calcite deposition. The sharp decline in cover and thickness of coralline algal carbonate deposits at high pCO2 highlighted their lower fitness in response to ocean acidification. Reductions in CO2 emissions are needed to limit the risk of losing coralline algal diversity.


Subject(s)
Rhodophyta , Seawater , Ecosystem , Hydrogen-Ion Concentration , Oceans and Seas
13.
EMBO Rep ; 20(9): e48084, 2019 09.
Article in English | MEDLINE | ID: mdl-31368207

ABSTRACT

The shape of the cell nucleus can vary considerably during developmental and pathological processes; however, the impact of nuclear morphology on cell behavior is not known. Here, we observed that the nuclear envelope flattens as cells transit from G1 to S phase and inhibition of myosin II prevents nuclear flattening and impedes progression to S phase. Strikingly, we show that applying compressive force on the nucleus in the absence of myosin II-mediated tension is sufficient to restore G1 to S transition. Using a combination of tools to manipulate nuclear morphology, we observed that nuclear flattening activates a subset of transcription factors, including TEAD and AP1, leading to transcriptional induction of target genes that promote G1 to S transition. In addition, we found that nuclear flattening mediates TEAD and AP1 activation in response to ROCK-generated contractility or cell spreading. Our results reveal that the nuclear envelope can operate as a mechanical sensor whose deformation controls cell growth in response to tension.


Subject(s)
Cell Nucleus/metabolism , Mechanotransduction, Cellular/physiology , Nuclear Envelope/metabolism , Transcription Factors/metabolism , Cell Cycle/genetics , Cell Cycle/physiology , Cell Division/genetics , Cell Division/physiology , Cell Line , Cell Nucleus/genetics , Flow Cytometry , G1 Phase/genetics , G1 Phase/physiology , HeLa Cells , Humans , Mechanotransduction, Cellular/genetics , Microscopy, Atomic Force , Nuclear Envelope/genetics , Plasmids/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , S Phase/genetics , S Phase/physiology , Transcription Factors/genetics
14.
Cereb Cortex ; 30(4): 2267-2280, 2020 04 14.
Article in English | MEDLINE | ID: mdl-31701138

ABSTRACT

Priming of attention shifts involves the reduction in search RTs that occurs when target location or target features repeat. We used functional magnetic resonance imaging to investigate the neural basis of such attentional priming, specifically focusing on its temporal characteristics over trial sequences. We first replicated earlier findings by showing that repetition of target color and of target location from the immediately preceding trial both result in reduced blood oxygen level-dependent (BOLD) signals in a cortical network that encompasses occipital, parietal, and frontal cortices: lag-1 repetition suppression. While such lag-1 suppression can have a number of explanations, behaviorally, the influence of attentional priming extends further, with the influence of past search trials gradually decaying across multiple subsequent trials. Our results reveal that the same regions within the frontoparietal network that show lag-1 suppression, also show longer term BOLD reductions that diminish over the course of several trial presentations, keeping pace with the decaying behavioral influence of past target properties across trials. This distinct parallel between the across-trial patterns of cortical BOLD and search RT reductions, provides strong evidence that these cortical areas play a key role in attentional priming.


Subject(s)
Attention/physiology , Frontal Lobe/metabolism , Nerve Net/metabolism , Parietal Lobe/metabolism , Photic Stimulation/methods , Adult , Frontal Lobe/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Male , Nerve Net/diagnostic imaging , Parietal Lobe/diagnostic imaging , Time Factors
15.
Cereb Cortex ; 30(11): 5899-5914, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32577717

ABSTRACT

It has recently been shown that large-scale propagation of blood-oxygen-level-dependent (BOLD) activity is constrained by anatomical connections and reflects transitions between behavioral states. It remains to be seen, however, if the propagation of BOLD activity can also relate to the brain's anatomical structure at a more local scale. Here, we hypothesized that BOLD propagation reflects structured neuronal activity across early visual field maps. To explore this hypothesis, we characterize the propagation of BOLD activity across V1, V2, and V3 using a modeling approach that aims to disentangle the contributions of local activity and directed interactions in shaping BOLD propagation. It does so by estimating the effective connectivity (EC) and the excitability of a noise-diffusion network to reproduce the spatiotemporal covariance structure of the data. We apply our approach to 7T fMRI recordings acquired during resting state (RS) and visual field mapping (VFM). Our results reveal different EC interactions and changes in cortical excitability in RS and VFM, and point to a reconfiguration of feedforward and feedback interactions across the visual system. We conclude that the propagation of BOLD activity has functional relevance, as it reveals directed interactions and changes in cortical excitability in a task-dependent manner.


Subject(s)
Brain Mapping/methods , Models, Neurological , Visual Cortex/physiology , Visual Pathways/physiology , Adult , Female , Humans , Magnetic Resonance Imaging , Male
16.
Neuroimage ; 170: 424-433, 2018 04 15.
Article in English | MEDLINE | ID: mdl-28867341

ABSTRACT

Resting-state fMRI is widely used to study brain function and connectivity. However, interpreting patterns of resting state (RS) fMRI activity remains challenging as they may arise from different neuronal mechanisms than those triggered by exogenous events. Currently, this limits the use of RS-fMRI for understanding cortical function in health and disease. Here, we examine the phase synchronization (PS) properties of blood-oxygen level dependent (BOLD) signals obtained during visual field mapping (VFM) and RS with 7T fMRI. This data-driven approach exploits spatiotemporal covariations in the phase of BOLD recordings to establish the presence of clusters of synchronized activity. We find that, in both VFM and RS data, selecting the most synchronized neighboring recording sites identifies spatially localized PS clusters that follow the topographic organization of the visual cortex. However, in activity obtained during VFM, PS is spatially more extensive than in RS activity, likely reflecting stimulus-driven interactions between local responses. Nevertheless, the similarity of the PS clusters obtained for RS and stimulus-driven fMRI suggest that they share a common neuroanatomical origin. Our finding justifies and facilitates direct comparison of RS and stimulus-evoked activity.


Subject(s)
Brain Mapping/methods , Magnetic Resonance Imaging/methods , Visual Cortex/physiology , Visual Fields/physiology , Visual Perception/physiology , Adult , Humans , Visual Cortex/diagnostic imaging
17.
Neuroimage ; 167: 41-52, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29155078

ABSTRACT

Human visual cortex does not represent the whole visual field with the same detail. Changes in receptive field size, population receptive field (pRF) size and cortical magnification factor (CMF) with eccentricity are well established, and associated with changes in visual acuity with eccentricity. Visual acuity also changes across polar angle. However, it remains unclear how RF size, pRF size and CMF change across polar angle. Here, we examine differences in pRF size and CMF across polar angle in V1, V2 and V3 using pRF modeling of human fMRI data. In these visual field maps, we find smaller pRFs and larger CMFs in horizontal (left and right) than vertical (upper and lower) visual field quadrants. Differences increase with eccentricity, approximately in proportion to average pRF size and CMF. Similarly, we find larger CMFs in the lower than upper quadrant, and again differences increase with eccentricity. However, pRF size differences between lower and upper quadrants change direction with eccentricity. Finally, we find slightly smaller pRFs in the left than right quadrants of V2 and V3, though this difference is very small, and we find no differences in V1 and no differences in CMF. Moreover, differences in pRF size and CMF vary gradually with polar angle and are not limited to the meridians or visual field map discontinuities. PRF size and CMF differences do not consistently follow patterns of cortical curvature, despite the link between cortical curvature and polar angle in V1. Thus, the early human visual cortex has a radially asymmetric representation of the visual field. These asymmetries may underlie consistent reports of asymmetries in perceptual abilities.


Subject(s)
Brain Mapping/methods , Color Perception/physiology , Magnetic Phenomena , Magnetic Resonance Imaging/methods , Pattern Recognition, Visual/physiology , Visual Cortex/physiology , Adult , Female , Humans , Male , Middle Aged , Visual Cortex/diagnostic imaging , Young Adult
19.
Proc Natl Acad Sci U S A ; 112(44): 13525-30, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26483452

ABSTRACT

Humans and many animals analyze sensory information to estimate quantities that guide behavior and decisions. These quantities include numerosity (object number) and object size. Having recently demonstrated topographic maps of numerosity, we ask whether the brain also contains maps of object size. Using ultra-high-field (7T) functional MRI and population receptive field modeling, we describe tuned responses to visual object size in bilateral human posterior parietal cortex. Tuning follows linear Gaussian functions and shows surround suppression, and tuning width narrows with increasing preferred object size. Object size-tuned responses are organized in bilateral topographic maps, with similar cortical extents responding to large and small objects. These properties of object size tuning and map organization all differ from the numerosity representation, suggesting that object size and numerosity tuning result from distinct mechanisms. However, their maps largely overlap and object size preferences correlate with numerosity preferences, suggesting associated representations of these two quantities. Object size preferences here show no discernable relation to visual position preferences found in visuospatial receptive fields. As such, object size maps (much like numerosity maps) do not reflect sensory organ structure but instead emerge within the brain. We speculate that, as in sensory processing, optimization of cognitive processing using topographic maps may be a common organizing principle in association cortex. Interactions between object size and numerosity maps may associate cognitive representations of these related features, potentially allowing consideration of both quantities together when making decisions.


Subject(s)
Form Perception/physiology , Parietal Lobe/physiology , Pattern Recognition, Visual/physiology , Size Perception/physiology , Adult , Brain Mapping , Computer Simulation , Humans , Magnetic Resonance Imaging/methods , Male , Models, Theoretical , Parietal Lobe/anatomy & histology , Photic Stimulation/methods , Random Allocation
20.
Neuroimage ; 149: 200-209, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28185950

ABSTRACT

Humans and many animals can distinguish between stimuli that differ in numerosity, the number of objects in a set. Human and macaque parietal lobes contain neurons that respond to changes in stimulus numerosity. However, basic non-numerical visual features can affect neural responses to and perception of numerosity, and visual features often co-vary with numerosity. Therefore, it is debated whether numerosity or co-varying low-level visual features underlie neural and behavioral responses to numerosity. To test the hypothesis that non-numerical visual features underlie neural numerosity responses in a human parietal numerosity map, we analyze responses to a group of numerosity stimulus configurations that have the same numerosity progression but vary considerably in their non-numerical visual features. Using ultra-high-field (7T) fMRI, we measure responses to these stimulus configurations in an area of posterior parietal cortex whose responses are believed to reflect numerosity-selective activity. We describe an fMRI analysis method to distinguish between alternative models of neural response functions, following a population receptive field (pRF) modeling approach. For each stimulus configuration, we first quantify the relationships between numerosity and several non-numerical visual features that have been proposed to underlie performance in numerosity discrimination tasks. We then determine how well responses to these non-numerical visual features predict the observed fMRI responses, and compare this to the predictions of responses to numerosity. We demonstrate that a numerosity response model predicts observed responses more accurately than models of responses to simple non-numerical visual features. As such, neural responses in cognitive processing need not reflect simpler properties of early sensory inputs.


Subject(s)
Brain Mapping/methods , Cognition/physiology , Magnetic Resonance Imaging/methods , Parietal Lobe/physiology , Adult , Female , Humans , Male , Mathematical Concepts , Visual Perception/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL