Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Biol ; 22(1): e3002463, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38289907

ABSTRACT

The emergence of successive Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) during 2020 to 2022, each exhibiting increased epidemic growth relative to earlier circulating variants, has created a need to understand the drivers of such growth. However, both pathogen biology and changing host characteristics-such as varying levels of immunity-can combine to influence replication and transmission of SARS-CoV-2 within and between hosts. Disentangling the role of variant and host in individual-level viral shedding of VOCs is essential to inform Coronavirus Disease 2019 (COVID-19) planning and response and interpret past epidemic trends. Using data from a prospective observational cohort study of healthy adult volunteers undergoing weekly occupational health PCR screening, we developed a Bayesian hierarchical model to reconstruct individual-level viral kinetics and estimate how different factors shaped viral dynamics, measured by PCR cycle threshold (Ct) values over time. Jointly accounting for both interindividual variation in Ct values and complex host characteristics-such as vaccination status, exposure history, and age-we found that age and number of prior exposures had a strong influence on peak viral replication. Older individuals and those who had at least 5 prior antigen exposures to vaccination and/or infection typically had much lower levels of shedding. Moreover, we found evidence of a correlation between the speed of early shedding and duration of incubation period when comparing different VOCs and age groups. Our findings illustrate the value of linking information on participant characteristics, symptom profile and infecting variant with prospective PCR sampling, and the importance of accounting for increasingly complex population exposure landscapes when analysing the viral kinetics of VOCs. Trial Registration: The Legacy study is a prospective observational cohort study of healthy adult volunteers undergoing weekly occupational health PCR screening for SARS-CoV-2 at University College London Hospitals or at the Francis Crick Institute (NCT04750356) (22,23). The Legacy study was approved by London Camden and Kings Cross Health Research Authority Research and Ethics committee (IRAS number 286469). The Legacy study was approved by London Camden and Kings Cross Health Research Authority Research and Ethics committee (IRAS number 286469) and is sponsored by University College London Hospitals. Written consent was given by all participants.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , SARS-CoV-2/genetics , Bayes Theorem , COVID-19/epidemiology , Prospective Studies
2.
PLoS Pathog ; 18(8): e1010349, 2022 08.
Article in English | MEDLINE | ID: mdl-36007063

ABSTRACT

SARS-CoV-2 is a betacoronavirus and the etiological agent of COVID-19, a devastating infectious disease. Due to its far-reaching effect on human health, there is an urgent and growing need to understand the viral molecular biology of SARS-CoV-2 and its interaction with the host cell. SARS-CoV-2 encodes 9 predicted accessory proteins, which are presumed to be dispensable for in vitro replication, most likely having a role in modulating the host cell environment to aid viral replication. Here we show that the ORF6 accessory protein interacts with cellular Rae1 to inhibit cellular protein production by blocking mRNA export. We utilised cell fractionation coupled with mRNAseq to explore which cellular mRNA species are affected by ORF6 expression and show that ORF6 can inhibit the export of many mRNA including those encoding antiviral factors such as IRF1 and RIG-I. We also show that export of these mRNA is blocked in the context of SARS-CoV-2 infection. Together, our studies identify a novel mechanism by which SARS-CoV-2 can manipulate the host cell environment to supress antiviral responses, providing further understanding to the replication strategies of a virus that has caused an unprecedented global health crisis.


Subject(s)
COVID-19 , SARS-CoV-2 , Viral Proteins/metabolism , Antiviral Agents , COVID-19/genetics , Humans , Immunity, Innate , Nuclear Matrix-Associated Proteins , Nucleocytoplasmic Transport Proteins/genetics , RNA, Messenger/genetics
3.
Euro Surveill ; 29(3)2024 Jan.
Article in English | MEDLINE | ID: mdl-38240057

ABSTRACT

Under International Health Regulations from 2005, a human infection caused by a novel influenza A virus variant is considered an event that has potential for high public health impact and is immediately notifiable to the World Health Organisation. We here describe the clinical, epidemiological and virological features of a confirmed human case of swine influenza A(H1N2)v in England detected through community respiratory virus surveillance. Swabbing and contact tracing helped refine public health risk assessment, following this unusual and unexpected finding.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Animals , Humans , Swine , Influenza A Virus, H1N2 Subtype , Influenza A Virus, H1N1 Subtype/genetics , Swine Diseases/diagnosis , Swine Diseases/epidemiology , Influenza, Human/diagnosis , Influenza, Human/epidemiology , England/epidemiology
4.
J Neuroinflammation ; 20(1): 184, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37537664

ABSTRACT

BACKGROUND: Although mainly causing a respiratory syndrome, numerous neurological symptoms have been identified following of SARS-CoV-2 infection. However, how the virus affects the brain and how the mutations carried by the different variants modulate those neurological symptoms remain unclear. METHODS: We used primary human pericytes, foetal astrocytes, endothelial cells and a microglial cell line to investigate the effect of several SARS-CoV-2 variants of concern or interest on their functional activities. Cells and a 3D blood-brain barrier model were infected with the wild-type form of SARS-CoV-2, Alpha, Beta, Delta, Eta, or Omicron (BA.1) variants at various MOI. Cells and supernatant were used to evaluate cell susceptibility to the virus using a microscopic assay as well as effects of infection on (i) cell metabolic activity using a colorimetric MTS assay; (ii) viral cytopathogenicity using the xCELLigence system; (iii) extracellular glutamate concentration by fluorometric assay; and (iv) modulation of blood-brain barrier permeability. RESULTS: We demonstrate that productive infection of brain cells is SARS-CoV-2 variant dependent and that all the variants induce stress to CNS cells. The wild-type virus was cytopathic to all cell types except astrocytes, whilst Alpha and Beta variants were only cytopathic for pericytes, and the Omicron variant cytopathic for endothelial cells and pericytes. Lastly wild-type virus increases blood-brain barrier permeability and all variants, except Beta, modulate extracellular glutamate concentration, which can lead to excitotoxicity or altered neurotransmission. CONCLUSIONS: These results suggest that SARS-CoV-2 is neurotropic, with deleterious consequences for the blood-brain barrier integrity and central nervous system cells, which could underlie neurological disorders following SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Blood-Brain Barrier , Endothelial Cells , Glutamic Acid
6.
PLoS Pathog ; 17(2): e1009352, 2021 02.
Article in English | MEDLINE | ID: mdl-33635919

ABSTRACT

Serological and plasmablast responses and plasmablast-derived IgG monoclonal antibodies (MAbs) have been analysed in three COVID-19 patients with different clinical severities. Potent humoral responses were detected within 3 weeks of onset of illness in all patients and the serological titre was elicited soon after or concomitantly with peripheral plasmablast response. An average of 13.7% and 3.5% of plasmablast-derived MAbs were reactive with virus spike glycoprotein or nucleocapsid, respectively. A subset of anti-spike (10 of 32) antibodies cross-reacted with other betacoronaviruses tested and harboured extensive somatic mutations, indicative of an expansion of memory B cells upon SARS-CoV-2 infection. Fourteen of 32 anti-spike MAbs, including five anti-receptor-binding domain (RBD), three anti-non-RBD S1 and six anti-S2, neutralised wild-type SARS-CoV-2 in independent assays. Anti-RBD MAbs were further grouped into four cross-inhibiting clusters, of which six antibodies from three separate clusters blocked the binding of RBD to ACE2 and five were neutralising. All ACE2-blocking anti-RBD antibodies were isolated from two recovered patients with prolonged fever, which is compatible with substantial ACE2-blocking response in their sera. Finally, the identification of non-competing pairs of neutralising antibodies would offer potential templates for the development of prophylactic and therapeutic agents against SARS-CoV-2.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/genetics , Antibody-Producing Cells/immunology , Binding Sites , Epitopes , Humans , Immunoglobulin G/immunology , Nucleocapsid/immunology , Spike Glycoprotein, Coronavirus/immunology
7.
Biochem J ; 478(13): 2405-2423, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34198322

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global public health challenge. While the efficacy of vaccines against emerging and future virus variants remains unclear, there is a need for therapeutics. Repurposing existing drugs represents a promising and potentially rapid opportunity to find novel antivirals against SARS-CoV-2. The virus encodes at least nine enzymatic activities that are potential drug targets. Here, we have expressed, purified and developed enzymatic assays for SARS-CoV-2 nsp13 helicase, a viral replication protein that is essential for the coronavirus life cycle. We screened a custom chemical library of over 5000 previously characterized pharmaceuticals for nsp13 inhibitors using a fluorescence resonance energy transfer-based high-throughput screening approach. From this, we have identified FPA-124 and several suramin-related compounds as novel inhibitors of nsp13 helicase activity in vitro. We describe the efficacy of these drugs using assays we developed to monitor SARS-CoV-2 growth in Vero E6 cells.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , RNA Helicases/antagonists & inhibitors , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Chlorocebus aethiops , Enzyme Assays , Fluorescence Resonance Energy Transfer , High-Throughput Screening Assays , RNA Helicases/metabolism , Reproducibility of Results , SARS-CoV-2/drug effects , Small Molecule Libraries/chemistry , Suramin/pharmacology , Vero Cells , Viral Nonstructural Proteins/metabolism
8.
Clin Infect Dis ; 73(4): e880-e889, 2021 08 16.
Article in English | MEDLINE | ID: mdl-33728434

ABSTRACT

BACKGROUND: Patients with chronic kidney disease (CKD) are more prone to severe infection. Vaccination is a key strategy to reduce this risk. Some studies suggest vaccine efficacy may be reduced in patients with CKD, despite preserved maintenance of long-term responses to some pathogens and vaccines. Here, we investigated immune responses to 2 vaccines in patients with CKD to identify predictors of immunological responsiveness. METHODS: Individuals >65 years old, with or without nondialysis CKD (n = 36 and 29, respectively), were vaccinated with a nonadjuvanted seasonal influenza vaccine (T-dependent) and Pneumovax23 (23-valent pneumococcal polysaccharide [PPV23], T-independent). Humoral responses were measured at baseline, day 28, and 6 months. Lymphocyte subset and plasma cell/blast analyses were performed using flow cytometry. Cytomegalovirus (CMV) serotyping was assessed by enzyme-linked immunosorbent assay. RESULTS: Only modest responsiveness was observed to both vaccines, independent of CKD status (25% adequate response in controls vs. 12%-18% in the CKD group). Unexpectedly, previous immunization with PPV23 (median 10-year interval) and CMV seropositivity were associated with poor PPV23 responsiveness in both study groups (P < .001 and .003, respectively; multivariable linear regression model). Patients with CKD displayed expanded circulating populations of T helper 2 and regulatory T cells, which were unrelated to vaccine responses. Despite fewer circulating B cells, patients with CKD were able to mount a similar day 7 plasma cell/blast response to controls. CONCLUSION: Patients with nondialysis CKD can respond similarly to vaccines as age- and sex-matched healthy individuals. CKD patients display an immune signature that is independent of vaccine responsiveness. Prior PPV23 immunization and CMV infection may influence responsiveness to vaccination. Clinical Trials Registration. NCT02535052.


Subject(s)
Cytomegalovirus Infections , Pneumococcal Infections , Renal Insufficiency, Chronic , Aged , Cytomegalovirus , Humans , Pneumococcal Vaccines , Renal Insufficiency, Chronic/complications , Vaccination
9.
J Gen Virol ; 101(5): 456-466, 2020 05.
Article in English | MEDLINE | ID: mdl-31702542

ABSTRACT

Serological assays with modern influenza A/H3N2 viruses have become problematic due to the progressive reduction in the ability of viruses of this subtype to bind and agglutinate red blood cells (RBCs). This is due to reduced ability of the viral haemagglutinin (HA) glycoprotein to bind to the sialic acid-containing receptors presented by these cells. Additionally, as a result of reduced HA-mediated binding in cell culture, modern A/H3N2 viruses often acquire compensatory mutations during propagation that enable binding of cellular receptors through their neuraminidase (NA) surface protein. Viruses that have acquired this NA-mediated binding agglutinate RBCs through their NA, confusing the results of serological assays designed to assess HA antigenicity. Here we confirm with a large dataset that the acquisition of mutations that confer NA binding of RBCs is a culture artefact, and demonstrate that modern A/H3N2 isolates with acquired NA-binding mutations revert to a clinical-like NA sequence after a single passage in human airway epithelial (HAE) cells.


Subject(s)
Epithelial Cells/virology , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/virology , Neuraminidase/genetics , Respiratory System/virology , Animals , Cell Line , Chlorocebus aethiops , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Madin Darby Canine Kidney Cells , Mutation/genetics , Orthomyxoviridae Infections/virology , Vero Cells , Viral Proteins/genetics
11.
Emerg Infect Dis ; 25(10): 1878-1883, 2019 10.
Article in English | MEDLINE | ID: mdl-31423969

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) was detected in humans in 2012. Since then, sporadic outbreaks with primary transmission through dromedary camels to humans and outbreaks in healthcare settings have shown that MERS-CoV continues to pose a threat to human health. Several serologic assays for MERS-CoV have been developed globally. We describe a collaborative study to investigate the comparability of serologic assays for MERS-CoV and assess any benefit associated with the introduction of a standard reference reagent for MERS-CoV serology. Our study findings indicate that, when possible, laboratories should use a testing algorithm including >2 tests to ensure correct diagnosis of MERS-CoV. We also demonstrate that the use of a reference reagent greatly improves the agreement between assays, enabling more consistent and therefore more meaningful comparisons between results.


Subject(s)
Coronavirus Infections/diagnosis , Middle East Respiratory Syndrome Coronavirus , Antibodies, Viral/blood , Antibodies, Viral/immunology , Coronavirus Infections/blood , Coronavirus Infections/immunology , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , Neutralization Tests , Oligonucleotide Array Sequence Analysis , Reference Standards , Reproducibility of Results , Sensitivity and Specificity , Serologic Tests/methods
19.
PLoS One ; 19(3): e0294897, 2024.
Article in English | MEDLINE | ID: mdl-38512960

ABSTRACT

BACKGROUND: SARS-CoV-2 variant Omicron rapidly evolved over 2022, causing three waves of infection due to sub-variants BA.1, BA.2 and BA.4/5. We sought to characterise symptoms and viral loads over the course of COVID-19 infection with these sub-variants in otherwise-healthy, vaccinated, non-hospitalised adults, and compared data to infections with the preceding Delta variant of concern (VOC). METHODS: In a prospective, observational cohort study, healthy vaccinated UK adults who reported a positive polymerase chain reaction (PCR) or lateral flow test, self-swabbed on alternate weekdays until day 10. We compared participant-reported symptoms and viral load trajectories between infections caused by VOCs Delta and Omicron (sub-variants BA.1, BA.2 or BA.4/5), and tested for relationships between vaccine dose, symptoms and PCR cycle threshold (Ct) as a proxy for viral load using Chi-squared (χ2) and Wilcoxon tests. RESULTS: 563 infection episodes were reported among 491 participants. Across infection episodes, there was little variation in symptom burden (4 [IQR 3-5] symptoms) and duration (8 [IQR 6-11] days). Whilst symptom profiles differed among infections caused by Delta compared to Omicron sub-variants, symptom profiles were similar between Omicron sub-variants. Anosmia was reported more frequently in Delta infections after 2 doses compared with Omicron sub-variant infections after 3 doses, for example: 42% (25/60) of participants with Delta infection compared to 9% (6/67) with Omicron BA.4/5 (χ2 P < 0.001; OR 7.3 [95% CI 2.7-19.4]). Fever was less common with Delta (20/60 participants; 33%) than Omicron BA.4/5 (39/67; 58%; χ2 P = 0.008; OR 0.4 [CI 0.2-0.7]). Amongst infections with an Omicron sub-variants, symptoms of coryza, fatigue, cough and myalgia predominated. Viral load trajectories and peaks did not differ between Delta, and Omicron, irrespective of symptom severity (including asymptomatic participants), VOC or vaccination status. PCR Ct values were negatively associated with time since vaccination in participants infected with BA.1 (ß = -0.05 (CI -0.10-0.01); P = 0.031); however, this trend was not observed in BA.2 or BA.4/5 infections. CONCLUSION: Our study emphasises both the changing symptom profile of COVID-19 infections in the Omicron era, and ongoing transmission risk of Omicron sub-variants in vaccinated adults. TRIAL REGISTRATION: NCT04750356.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/prevention & control , SARS-CoV-2 , Prospective Studies , Vaccination
20.
medRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873362

ABSTRACT

Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997-2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection dynamics, presumably via heterosubtypic cross-immunity.

SELECTION OF CITATIONS
SEARCH DETAIL