Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Biochem J ; 479(6): 805-823, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35298586

ABSTRACT

The regulation of lipid metabolism in oil seeds is still not fully understood and increasing our knowledge in this regard is of great economic, as well as intellectual, importance. Oilseed rape (Brassica napus) is a major global oil crop where increases in triacylglycerol (TAG) accumulation have been achieved by overexpression of relevant biosynthetic enzymes. In this study, we expressed Arabidopsis phospholipid: diacylglycerol acyltransferase (PDAT1), one of the two major TAG-forming plant enzymes in B. napus DH12075 to evaluate its effect on lipid metabolism in developing seeds and to estimate its flux control coefficient. Despite several-fold increase in PDAT activity, seeds of three independently generated PDAT transgenic events showed a small but consistent decrease in seed oil content and had altered fatty acid composition of phosphoglycerides and TAG, towards less unsaturation. Mass spectrometry imaging of seed sections confirmed the shift in lipid compositions and indicated that PDAT overexpression altered the distinct heterogeneous distributions of phosphatidylcholine (PC) molecular species. Similar, but less pronounced, changes in TAG molecular species distributions were observed. Our data indicate that PDAT exerts a small, negative, flux control on TAG biosynthesis and could have under-appreciated effects in fine-tuning of B. napus seed lipid composition in a tissue-specific manner. This has important implications for efforts to increase oil accumulation in similar crops.


Subject(s)
Brassica napus , Brassica napus/genetics , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Lipid Metabolism , Phospholipids/metabolism , Seeds/metabolism
2.
Int J Mol Sci ; 24(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37240183

ABSTRACT

Polyunsaturated fatty acids (PUFAs) are important components of the diet of mammals. Their role was first established when the essential fatty acids (EFAs) linoleic acid and α-linolenic acid were discovered nearly a century ago. However, most of the biochemical and physiological actions of PUFAs rely on their conversion to 20C or 22C acids and subsequent metabolism to lipid mediators. As a generalisation, lipid mediators formed from n-6 PUFAs are pro-inflammatory while those from n-3 PUFAs are anti-inflammatory or neutral. Apart from the actions of the classic eicosanoids or docosanoids, many newly discovered compounds are described as Specialised Pro-resolving Mediators (SPMs) which have been proposed to have a role in resolving inflammatory conditions such as infections and preventing them from becoming chronic. In addition, a large group of molecules, termed isoprostanes, can be generated by free radical reactions and these too have powerful properties towards inflammation. The ultimate source of n-3 and n-6 PUFAs are photosynthetic organisms which contain Δ-12 and Δ-15 desaturases, which are almost exclusively absent from animals. Moreover, the EFAs consumed from plant food are in competition with each other for conversion to lipid mediators. Thus, the relative amounts of n-3 and n-6 PUFAs in the diet are important. Furthermore, the conversion of the EFAs to 20C and 22C PUFAs in mammals is rather poor. Thus, there has been much interest recently in the use of algae, many of which make substantial quantities of long-chain PUFAs or in manipulating oil crops to make such acids. This is especially important because fish oils, which are their main source in human diets, are becoming limited. In this review, the metabolic conversion of PUFAs into different lipid mediators is described. Then, the biological roles and molecular mechanisms of such mediators in inflammatory diseases are outlined. Finally, natural sources of PUFAs (including 20 or 22 carbon compounds) are detailed, as well as recent efforts to increase their production.


Subject(s)
Fatty Acids, Omega-3 , Fatty Acids, Unsaturated , Humans , Animals , Fatty Acids, Unsaturated/metabolism , Diet , Fatty Acids, Omega-3/metabolism , Eicosanoids , Fatty Acids, Omega-6 , Mammals/metabolism
3.
Plant Cell Physiol ; 61(4): 735-747, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31883014

ABSTRACT

Acyl-CoA-binding proteins (ACBPs) are involved in binding and trafficking acyl-CoA esters in eukaryotic cells. ACBPs contain a well-conserved acyl-CoA-binding domain. Their various functions have been characterized in the model plant Arabidopsis and, to a lesser extent, in rice. In this study, genome-wide detection and expression analysis of ACBPs were performed on Elaeis guineensis (oil palm), the most important oil crop in the world. Seven E. guineensis ACBPs were identified and classified into four groups according to their deduced amino acid domain organization. Phylogenetic analysis showed conservation of this family with other higher plants. All seven EgACBPs were expressed in most tissues while their differential expression suggests various functions in specific tissues. For example, EgACBP3 had high expression in inflorescences and stalks while EgACBP1 showed strong expression in leaves. Because of the importance of E. guineensis as an oil crop, expression of EgACBPs was specifically examined during fruit development. EgACBP3 showed high expression throughout mesocarp development, while EgACBP1 had enhanced expression during rapid oil synthesis. In endosperm, both EgACBP1 and EgACBP3 exhibited increased expression during seed development. These results provide important information for further investigations on the biological functions of EgACBPs in various tissues and, in particular, their roles in oil synthesis.


Subject(s)
Diazepam Binding Inhibitor/genetics , Gene Expression Regulation, Plant , Palm Oil/metabolism , Plant Proteins/genetics , Amino Acid Sequence , Arecaceae/genetics , Arecaceae/metabolism , Diazepam Binding Inhibitor/metabolism , Endosperm/metabolism , Phylogeny , Plant Leaves/metabolism , Plant Proteins/metabolism , Seeds/metabolism , Transcriptome
4.
Plant Cell Physiol ; 60(12): 2812-2825, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31504915

ABSTRACT

Production of vegetable oils is a vital agricultural resource and oilseed rape (Brassica napus) is the third most important oil crop globally. Although the regulation of lipid biosynthesis in oilseeds is still not fully defined, the acyl-CoA-binding proteins (ACBPs) have been reported to be involved in such metabolism, including oil accumulation, in several plant species. In this study, progressive changes in gene expression in embryos and seed coats at different stages of seed development were comprehensively investigated by transcriptomic analyses in B. napus, revealing dynamic changes in the expression of genes involved in lipid biosynthesis. We show that genes encoding BnACBP proteins show distinct changes in expression at different developmental stages of seed development and show markedly different expression between embryos and seed coats. Both isoforms of the ankyrin-repeat BnACBP2 increased during the oil accumulation period of embryo development. By contrast, the expression of the three most abundant isoforms of the small molecular mass BnACBP6 in embryos showed progressive reduction, despite having the highest overall expression level. In seed coats, BnACBP3, BnACBP4 and BnACBP5 expression remained constant during development, whereas the two major isoforms of BnACBP6 increased, contrasting with the data from embryos. We conclude that genes related to fatty acid and triacylglycerol biosynthesis showing dynamic expression changes may regulate the lipid distribution in embryos and seed coats of B. napus and that BnACBP2 and BnACBP6 are potentially important for oil accumulation.


Subject(s)
Brassica napus/embryology , Brassica napus/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/genetics , Seeds/physiology , Transcriptome/genetics , Transcriptome/physiology
5.
New Phytol ; 224(2): 700-711, 2019 10.
Article in English | MEDLINE | ID: mdl-31400160

ABSTRACT

Lysophosphatidate acyltransferase (LPAAT) catalyses the second step of the Kennedy pathway for triacylglycerol (TAG) synthesis. In this study we expressed Trapaeolum majus LPAAT in Brassica napus (B. napus) cv 12075 to evaluate the effects on lipid synthesis and estimate the flux control coefficient for LPAAT. We estimated the flux control coefficient of LPAAT in a whole plant context by deriving a relationship between it and overall lipid accumulation, given that this process is a exponential. Increasing LPAAT activity resulted in greater TAG accumulation in seeds of between 25% and 29%; altered fatty acid distributions in seed lipids (particularly those of the Kennedy pathway); and a redistribution of label from 14 C-glycerol between phosphoglycerides. Greater LPAAT activity in seeds led to an increase in TAG content despite its low intrinsic flux control coefficient on account of the exponential nature of lipid accumulation that amplifies the effect of the small flux increment achieved by increasing its activity. We have also developed a novel application of metabolic control analysis likely to have broad application as it determines the in planta flux control that a single component has upon accumulation of storage products.


Subject(s)
Acyltransferases/metabolism , Brassica napus/enzymology , Seeds/chemistry , Triglycerides/metabolism , Acyltransferases/genetics , Brassica napus/metabolism , DNA, Plant , Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Plant/physiology , Plants, Genetically Modified , Triglycerides/chemistry , Tropaeolum/enzymology , Tropaeolum/genetics
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(3): 339-348, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29275220

ABSTRACT

With dwindling available agricultural land, concurrent with increased demand for oil, there is much current interest in raising oil crop productivity. We have been addressing this issue by studying the regulation of oil accumulation in oilseed rape (Brassica napus L). As part of this research we have carried out a detailed lipidomic analysis of developing seeds. The molecular species distribution in individual lipid classes revealed quite distinct patterns and showed where metabolic connections were important. As the seeds developed, the molecular species distributions changed, especially in the period of early (20days after flowering, DAF) to mid phase (27DAF) of oil accumulation. The patterns of molecular species of diacylglycerol, phosphatidylcholine and acyl-CoAs were used to predict the possible relative contributions of diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase to triacylglycerol production. Our calculations suggest that DGAT may hold a more important role in influencing the molecular composition of TAG. Enzyme selectivity had an important influence on the final molecular species patterns. Our data contribute significantly to our understanding of lipid accumulation in the world's third most important oil crop.


Subject(s)
Brassica napus/metabolism , Lipid Metabolism/physiology , Seeds/growth & development , Brassica napus/genetics , Plant Proteins/biosynthesis , Plant Proteins/genetics , Seeds/genetics
7.
Plant Physiol ; 173(4): 1998-2009, 2017 04.
Article in English | MEDLINE | ID: mdl-28188274

ABSTRACT

The regulation of lipid synthesis in oil seeds is still not fully understood. Oilseed rape (Brassica napus) is the third most productive vegetable oil crop on the global market; therefore, increasing our understanding of lipid accumulation in oilseed rape seeds is of great economic, as well as intellectual, importance. Matrix-assisted laser/desorption ionization-mass spectrometry imaging (MALDI-MSI) is a technique that allows the mapping of metabolites directly onto intact biological tissues, giving a spatial context to metabolism. We have used MALDI-MSI to study the spatial distribution of two major lipid species, triacylglycerols and phosphatidylcholines. A dramatic, heterogenous landscape of molecular species was revealed, demonstrating significantly different lipid compositions between the various tissue types within the seed. The embryonic axis was found to be particularly enriched in palmitic acid, while the seed coat/aleurone layer accumulated vaccenic, linoleic, and α-linoleic acids. Furthermore, the lipid composition of the inner and outer cotyledons differed from each other, a remarkable discovery given the supposed identical functionality of these two tissues. Triacylglycerol and phosphatidylcholine molecular species distribution was analyzed through a developmental time series covering early seed lipid accumulation to seed maturity. The spatial patterning of lipid molecular species did not vary significantly during seed development. Data gathered using MALDI-MSI was verified through gas chromatography analysis of dissected seeds. The distinct lipid distribution profiles observed imply differential regulation of lipid metabolism between the different tissue types of the seed. Further understanding of this differential regulation will enhance efforts to improve oilseed rape productivity and quality.


Subject(s)
Brassica napus/metabolism , Lipids/biosynthesis , Plant Oils/metabolism , Seeds/metabolism , Spatio-Temporal Analysis , Chromatography, Gas , Cotyledon/metabolism , Linoleic Acid/analysis , Lipids/chemistry , Magnetic Resonance Spectroscopy , Oleic Acids/analysis , Palmitic Acid/analysis , Phosphatidylcholines/biosynthesis , Phosphatidylcholines/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Time Factors , Triglycerides/biosynthesis , Triglycerides/chemistry
8.
Biochim Biophys Acta ; 1861(6): 524-37, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26968097

ABSTRACT

Alzheimer's disease (AD) is of major concern in ageing populations and we have used the Tg2576 mouse model to understand connections between brain lipids and amyloid pathology. Because dietary docosahexaenoic acid (DHA) has been identified as beneficial, we compared mice fed with a DHA-supplemented diet to those on a nutritionally-sufficient diet. Major phospholipids from cortex, hippocampus and cerebellum were separated and analysed. Each phosphoglyceride had a characteristic fatty acid composition which was similar in cortex and hippocampus but different in the cerebellum. The biggest changes on DHA-supplementation were within ethanolamine phospholipids which, together with phosphatidylserine, had the highest proportions of DHA. Reciprocal alterations in DHA and arachidonate were found. The main diet-induced alterations were found in ethanolamine phospholipids, (and included their ether derivatives), as were the changes observed due to genotype. Tg mice appeared more sensitive to diet with generally lower DHA percentages when on the standard diet and higher relative proportions of DHA when the diet was supplemented. All four major phosphoglycerides analysed showed age-dependent decreases in polyunsaturated fatty acid contents. These data provide, for the first time, a detailed evaluation of phospholipids in different brain areas previously shown to be relevant to behaviour in the Tg2576 mouse model for AD. The lipid changes observed with genotype are consistent with the subtle alterations found in AD patients, especially for the ethanolamine phospholipid molecular species. They also emphasise the contrasting changes in fatty acid content induced by DHA supplementation within individual phospholipid classes.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Dietary Supplements , Docosahexaenoic Acids/administration & dosage , Phospholipids/metabolism , Alzheimer Disease/genetics , Animals , Cerebellum/metabolism , Cerebral Cortex/metabolism , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Disease Models, Animal , Docosahexaenoic Acids/pharmacology , Fatty Acids/metabolism , Glycerophospholipids/metabolism , Hippocampus/metabolism , Humans , Lipid Metabolism/drug effects , Mice, Transgenic , Phosphatidylethanolamines/metabolism , Phosphatidylserines/metabolism , Tandem Mass Spectrometry/methods
9.
Biochim Biophys Acta Biomembr ; 1859(9 Pt B): 1679-1689, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28341437

ABSTRACT

Ceramides are important for skin health, with a multitude of species found in both dermis and epidermis. The epidermis contains linoleic acid-Ester-linked Omega-hydroxylated ceramides of 6-Hydroxy-sphingosine, Sphingosine and Phytosphingosine bases (CER[EOH], CER[EOS] and CER[EOP], respectively), that are crucial for the formation of the epidermal barrier, conferring protection from environmental factors and preventing trans-epidermal water loss. Furthermore, a large number of ceramides, derivatives of the same sphingoid bases and various fatty acids, are produced by dermal and epidermal cells and perform signalling roles in cell functions ranging from differentiation to apoptosis. Supplementation with the n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have shown promise as therapeutic agents in a number of inflammatory skin conditions, altering the lipid profile of the skin and production of bioactive lipids such as the eicosanoids, docosanoids and endocannabinoids. In this study we wished to investigate whether EPA and DHA could also affect the ceramide profile in epidermis and dermis, and, in this way, contribute to formation of a robust lipid barrier and ceramide-mediated regulation of skin functions. Ex vivo skin explants were cultured for 6days, and supplemented with EPA or DHA (50µM). Liquid chromatography coupled to tandem mass spectrometry with electrospray ionisation was used to assess the prevalence of 321 individual ceramide species, and a number of sphingoid bases, phosphorylated sphingoid bases, and phosphorylated ceramides, within the dermis and epidermis. EPA augmented dermal production of members of the ceramide families containing Non-hydroxy fatty acids and Sphingosine or Dihydrosphingosine bases (CER[NS] and CER[NDS], respectively), while epidermal CER[EOH], CER[EOS] and CER[EOP] ceramides were not affected. DHA did not significantly affect ceramide production. Ceramide-1-phosphate levels in the epidermis, but not the dermis, increased in response to EPA, but not DHA. This ex vivo study shows that dietary supplementation with EPA has the potential to alter the ceramide profile of the skin, and this may contribute to its anti-inflammatory profile. This has implications for formation of the epidermal lipid barrier, and signalling pathways within the skin mediated by ceramides and other sphingolipid species. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.


Subject(s)
Ceramides/physiology , Fatty Acids, Omega-3/pharmacology , Skin/drug effects , Ceramides/analysis , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Humans , Organ Culture Techniques , Skin/chemistry , Spectrometry, Mass, Electrospray Ionization
10.
Biochem Soc Trans ; 45(2): 297-302, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28408470

ABSTRACT

Lipids are key molecules for membranes, energy storage and signalling. I have been privileged to have worked in such a diverse field and in organisms from microbes to humans. Here I will describe some of those contrasting areas which range from environmental impacts to food production and on to human health. It has been a fascinating journey which still continues to excite me.


Subject(s)
Membrane Lipids/metabolism , Biomedical Research , Conservation of Natural Resources , Food Industry , History, 20th Century , Humans
11.
Neurobiol Learn Mem ; 130: 118-28, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26868479

ABSTRACT

The present study examined memory function in Tc1 mice, a transchromosomic model of Down syndrome (DS). Tc1 mice demonstrated an unusual delay-dependent deficit in recognition memory. More specifically, Tc1 mice showed intact immediate (30sec), impaired short-term (10-min) and intact long-term (24-h) memory for objects. A similar pattern was observed for olfactory stimuli, confirming the generality of the pattern across sensory modalities. The specificity of the behavioural deficits in Tc1 mice was confirmed using APP overexpressing mice that showed the opposite pattern of object memory deficits. In contrast to object memory, Tc1 mice showed no deficit in either immediate or long-term memory for object-in-place information. Similarly, Tc1 mice showed no deficit in short-term memory for object-location information. The latter result indicates that Tc1 mice were able to detect and react to spatial novelty at the same delay interval that was sensitive to an object novelty recognition impairment. These results demonstrate (1) that novelty detection per se and (2) the encoding of visuo-spatial information was not disrupted in adult Tc1 mice. The authors conclude that the task specific nature of the short-term recognition memory deficit suggests that the trisomy of genes on human chromosome 21 in Tc1 mice impacts on (perirhinal) cortical systems supporting short-term object and olfactory recognition memory.


Subject(s)
Down Syndrome/psychology , Memory Disorders/psychology , Memory, Long-Term/physiology , Memory, Short-Term/physiology , Recognition, Psychology/physiology , Animals , Disease Models, Animal , Down Syndrome/genetics , Exploratory Behavior/physiology , Female , Male , Memory Disorders/genetics , Mice , Spatial Behavior/physiology
12.
Biochim Biophys Acta ; 1838(6): 1488-500, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24565795

ABSTRACT

Although there is much knowledge of the enzymology (and genes coding the proteins) of lipid biosynthesis in higher plants, relatively little attention has been paid to regulation. We have demonstrated the important role for cholinephosphate cytidylyltransferase in the biosynthesis of the major extra-plastidic membrane lipid, phosphatidylcholine. We followed this work by applying control analysis to light-induced fatty acid synthesis. This was the first such application to lipid synthesis in any organism. The data showed that acetyl-CoA carboxylase was very important, exerting about half of the total control. We then applied metabolic control analysis to lipid accumulation in important oil crops - oilpalm, olive, and rapeseed. Recent data with soybean show that the block of fatty acid biosynthesis reactions exerts somewhat more control (63%) than lipid assembly although both are clearly very important. These results suggest that gene stacks, targeting both parts of the overall lipid synthesis pathway will be needed to increase significantly oil yields in soybean. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.


Subject(s)
Gene Expression Regulation, Plant , Glycine max/metabolism , Lipid Metabolism , Lipids/biosynthesis
13.
Biochim Biophys Acta ; 1838(6): 1594-618, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24374314

ABSTRACT

The classic heat shock (stress) response (HSR) was originally attributed to protein denaturation. However, heat shock protein (Hsp) induction occurs in many circumstances where no protein denaturation is observed. Recently considerable evidence has been accumulated to the favor of the "Membrane Sensor Hypothesis" which predicts that the level of Hsps can be changed as a result of alterations to the plasma membrane. This is especially pertinent to mild heat shock, such as occurs in fever. In this condition the sensitivity of many transient receptor potential (TRP) channels is particularly notable. Small temperature stresses can modulate TRP gating significantly and this is influenced by lipids. In addition, stress hormones often modify plasma membrane structure and function and thus initiate a cascade of events, which may affect HSR. The major transactivator heat shock factor-1 integrates the signals originating from the plasma membrane and orchestrates the expression of individual heat shock genes. We describe how these observations can be tested at the molecular level, for example, with the use of membrane perturbers and through computational calculations. An important fact which now starts to be addressed is that membranes are not homogeneous nor do all cells react identically. Lipidomics and cell profiling are beginning to address the above two points. Finally, we observe that a deregulated HSR is found in a large number of important diseases where more detailed knowledge of the molecular mechanisms involved may offer timely opportunities for clinical interventions and new, innovative drug treatments. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.


Subject(s)
Cell Membrane/metabolism , Heat-Shock Proteins/metabolism , Membrane Lipids/metabolism , Neurodegenerative Diseases/therapy , Animals , Heat-Shock Response/physiology , Humans , Neurodegenerative Diseases/metabolism
15.
Mol Membr Biol ; 29(7): 274-89, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22583025

ABSTRACT

The in vitro culture of cells offers an extremely valuable method for probing biochemical questions and many commonly-used protocols are available. For mammalian cells a source of lipid is usually provided in the serum component. In this study we examined the question as to whether the nature of the lipid could become limiting at high cell densities and, therefore, prospectively influence the metabolism and physiology of the cells themselves. When B16 mouse melanoma cells were cultured, we noted a marked decrease in the proportions of n-3 and n-6 polyunsaturated fatty acids (PUFAs) with increasing cell density. This was despite considerable quantities of these PUFAs still remaining in the culture medium and seemed to reflect the preferential uptake of unesterified PUFA rather than other lipid classes from the media. The reduction in B16 total PUFA was reflected in changes in about 70% of the molecular species of membrane phosphoglycerides which were analysed by mass spectrometry. The importance of this finding lies in the need for n-3 and n-6 PUFA in mammalian cells (which cannot synthesize their own). Although the cholesterol content of cells was unchanged the amount of cholesterol enrichment in membrane rafts (as assessed by fluorescence) was severely decreased, simultaneous with a reduced heat shock response following exposure to 42°C. These data emphasize the pivotal role of nutrient supply (in this case for PUFAs) in modifying responses to stress and highlight the need for the careful control of culture conditions when assessing cellular responses in vitro.


Subject(s)
Fatty Acids, Unsaturated/pharmacology , Glycerophospholipids/metabolism , Heat-Shock Response/drug effects , Melanoma/metabolism , Animals , Cell Line, Tumor , Culture Media/pharmacology , Fatty Acids, Unsaturated/metabolism , Hot Temperature , Melanoma/pathology , Mice
16.
Biosystems ; 227-228: 104905, 2023 May.
Article in English | MEDLINE | ID: mdl-37100112

ABSTRACT

The increasing global demand for vegetable oils will only be met if there are significant improvements in the productivity of the major oil crops, such as oilseed rape. Metabolic engineering offers the prospect of further gains in yield beyond that already achieved by breeding and selection but requires guidance as to the changes that need to be made. Metabolic Control Analysis, through measurement and estimation of flux control coefficients, can indicate which enzymes have the most influence on a desired flux. Some experiments have previously reported flux control coefficients for oil accumulation in the seeds of oilseed rape, and others have measured control coefficient distributions for multi-enzyme segments of oil synthesis in seed embryo metabolism measured in vitro. In addition, other reported manipulations of oil accumulation contain results that are exploited further here to calculate previously unknown flux control coefficients. These results are then assembled within a framework that allows an integrated interpretation of the controls on oil accumulation from the assimilation of CO2 to deposition of oil in the seed. The analysis shows that the control is distributed to an extent that the gains from amplifying any single target are necessarily limited, but there are candidates for joint amplification that are likely to act synergistically to produce much more significant gains.


Subject(s)
Brassica napus , Triglycerides/metabolism , Brassica napus/metabolism , Plant Oils/metabolism , Seeds/metabolism
17.
New Phytol ; 196(2): 414-426, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22901003

ABSTRACT

Metabolic control analysis allows the study of metabolic regulation. We applied both single- and double-manipulation top-down control analysis to examine the control of lipid accumulation in developing oilseed rape (Brassica napus) embryos. The biosynthetic pathway was conceptually divided into two blocks of reactions (fatty acid biosynthesis (Block A), lipid assembly (Block B)) connected by a single system intermediate, the acyl-coenzyme A (acyl-CoA) pool. Single manipulation used exogenous oleate. Triclosan was used to inhibit specifically Block A, whereas diazepam selectively manipulated flux through Block B. Exogenous oleate inhibited the radiolabelling of fatty acids from [1-(14)C]acetate, but stimulated that from [U-14C]glycerol into acyl lipids. The calculation of group flux control coefficients showed that c. 70% of the metabolic control was in the lipid assembly block of reactions. Monte Carlo simulations gave an estimation of the error of the resulting group flux control coefficients as 0.27±0.06 for Block A and 0.73±0.06 for Block B. The two methods of control analysis gave very similar results and showed that Block B reactions were more important under our conditions. This contrasts notably with data from oil palm or olive fruit cultures and is important for efforts to increase oilseed rape lipid yields.


Subject(s)
Brassica napus/embryology , Brassica napus/metabolism , Lipids/biosynthesis , Metabolomics/methods , Plant Oils/metabolism , Seeds/metabolism , Acyl Coenzyme A/metabolism , Brassica napus/drug effects , Carbon Radioisotopes , Diazepam/pharmacology , Fatty Acids, Monounsaturated , Lipids/classification , Oleic Acid/pharmacology , Rapeseed Oil , Seeds/drug effects , Time Factors , Triclosan/pharmacology
18.
Ecotoxicology ; 21(1): 124-38, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21909961

ABSTRACT

The macro-alga Fucus vesiculosus has a broad global and estuarine distribution and exhibits exceptional resistance to toxic metals, the molecular basis of which is poorly understood. To address this issue a cDNA library was constructed from an environmental isolate of F. vesiculosus growing in an area with chronic copper pollution. Characterisation of this library led to the identification of a cDNA encoding a protein known to be synthesised in response to toxicity, a full length 14-3-3 exhibiting a 71% identity to human/mouse epsilon isoform, 70-71% identity to yeast BMH1/2 and 95 and 71% identity to the Ectocarpus siliculosus 14-3-3 isoforms 1 and 2 respectively. Preliminary characterisation of the expression profile of the 14-3-3 indicated concentration- and time-dependent inductions on acute exposure of F. vesiculosus of copper (3-30 µg/l). Higher concentrations of copper (≥150 µg/l) did not elicit significant induction of the 14-3-3 gene compared with the control even though levels of both intracellular copper and the expression of a cytosolic metal chaperone, metallothionein, continued to rise. Analysis of gene expression within environmental isolates demonstrated up-regulation of the 14-3-3 gene associated with the known copper pollution gradient. Here we report for the first time, identification of a gene encoding a putative 14-3-3 protein in a multicellular alga and provide preliminary evidence to link the induction of this 14-3-3 gene to copper exposure in this alga. Interestingly, the threshold exposure profile may be associated with a decrease in the organism's ability to control copper influx so that it perceives copper as a toxic response.


Subject(s)
14-3-3 Proteins/genetics , Copper/toxicity , Fucus/drug effects , Fucus/genetics , Up-Regulation , 14-3-3 Proteins/metabolism , Amino Acid Sequence , DNA, Complementary/genetics , DNA, Complementary/metabolism , Environmental Monitoring , Fucus/metabolism , Gene Library , Molecular Sequence Data , Sequence Analysis, DNA
19.
Trends Biochem Sci ; 32(8): 357-63, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17629486

ABSTRACT

In addition to high temperature, other stresses and clinical conditions such as cancer and diabetes can lead to the alteration of heat-shock protein (HSP) levels in cells. Moreover, HSPs can associate with either specific lipids or with areas of special membrane topology (such as lipid rafts), and changes in the physical state of cellular membranes can alter hsp gene expression. We propose that membrane microheterogeneity is important for regulating the HSP response. In support of this hypothesis, when particular membrane intercalating compounds are used to alter membrane properties, the simultaneous normalization of dysregulated expression of HSPs causes beneficial responses to disease states. Therefore, these compounds (such as hydroxylamine derivatives) have the potential to become a new class of pharmaceuticals for use in 'membrane-lipid therapy'.


Subject(s)
Cell Membrane/metabolism , Heat-Shock Proteins/metabolism , Lipids/chemistry , Membrane Lipids/chemistry , Membrane Microdomains/physiology , Animals , Cell Line, Tumor , Hot Temperature , Humans , Insulin/metabolism , Membrane Microdomains/chemistry , Models, Biological , Promoter Regions, Genetic , Protein Binding , Temperature
20.
Prog Lipid Res ; 88: 101181, 2022 11.
Article in English | MEDLINE | ID: mdl-35820474

ABSTRACT

Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of traits of farmed animals is also discussed along with DGATs in various other eukaryotic organisms.


Subject(s)
Acyl Coenzyme A , Diacylglycerol O-Acyltransferase , Animals , Humans , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/chemistry , Diacylglycerol O-Acyltransferase/metabolism , Acyl Coenzyme A/metabolism , Metabolic Engineering , Triglycerides , Eukaryota , Esters/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL