Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Environ Res ; 239(Pt 1): 117244, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37783330

ABSTRACT

Microalgal-bacterial granular sludge (MBGS) has attached attention for sustainable wastewater treatment, but it remains elusive whether it can adapt to outdoor light-limited conditions. This paper investigated the biological adaptation mechanisms of MBGS to outdoor light-limited diel conditions using real municipal wastewater. The results indicated that MBGS still had excellent pollutants removal performance, and that both the extracellular polymeric substances and glycogen content of MBGS increased significantly. The main functional microalgae and bacteria were revealed to be Leptolyngbyaceae and Rhodanobacteria, respectively. Further analyses indicated that the abundance of genes encoding PsbA, PsbD, PsbE, PsbJ, PsbP, Psb27, Psb28-2, PsaC, PsaE, PsaL, PsbX, PetB, PetA, and PetE increased in photosystem. Meanwhile, the abundance of gene encoding Rubisco decreased but the gene abundance regarding to crassulacean acid metabolism cycle increased. These suggested that MBGS could adjust the photosynthetic pathway to ensure the completion of photosynthesis. This study is anticipated to add fundamental insights for the MBGS process operated under outdoor light-limited conditions.


Subject(s)
Cyanobacteria , Microalgae , Sewage , Wastewater
2.
Environ Monit Assess ; 195(9): 1078, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37615739

ABSTRACT

The 17 α-ethinylestradiol (EE2) adsorption from aqueous solution was examined using a novel adsorbent made from rice husk powder coated with CuO nanoparticles (CRH). Advanced analyses of FTIR, XRD, SEM, and EDSwere used to identify the classification parameters of a CRH-like surface morphology, configuration, and functional groups. The rice husk was coated with CuO nanoparticles, allowing it to create large surface area materials with significantly improved textural qualities with regard to functional use and adsorption performance, according to a detailed characterization of the synthesized materials. The adsorption process was applied successfully with elimination effectiveness of 100% which can be kept up to 61.3%. The parameters of adsorption were affecting the adsorption process significantly. Thermodynamic data stated that the process of adsorption was endothermic, spontaneous, chemisorption and the molecules of EE2 show affinity with the CRH. It was discovered that the adsorption process controlled by a pseudo-second-order kinetic model demonstrates that the chemisorption process was controlling EE2 removal. The Sips model is regarded as optimal for representing this practice, exhibiting a significantly high determination coefficient of 0.948. This coefficient implies that the adsorption mechanism indicates the occurrence of both heterogeneous and homogeneous adsorption. According to the findings, biomass can serve as a cheap, operative sorbent to remove estrogen from liquified solutions.


Subject(s)
Nanoparticles , Oryza , Copper , Adsorption , Kinetics , Environmental Monitoring , Ethinyl Estradiol , Oxides
3.
J Environ Manage ; 311: 114832, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35303596

ABSTRACT

Native emergent and floating plants; local reed grass (Phragmites karka) and water hyacinth (Eichhornia crassipes), respectively, were used to treat textile wastewater using an integrated emergent-floating planted reactor (IEFPR) system at hydraulic retention times (HRTs) of 8, 14, and 19 days. Real textile effluent having characteristics of 1686.3 ADMI for colour, 535 mg/L for total suspended solid (TSS), 647.7 mg/L for chemical oxygen demand (COD) and 124 mg/L for biochemical oxygen demand (BOD) was used throughout this study. The IEFPR system experienced maximum removal of colour (94.8%, HRT 14 days, day 3), TSS (92.7%, HRT 19 days, day 7), and COD (96.6%, HRT 8 days, day 5) at different HRT and exposure time. The process conditions (HRT and exposure time) were optimized for maximum colour, TSS and COD removal from textile effluent by employing response surface methodology (RSM). The optimization has resulted 100% removal of colour, 87% removal of TSS and 100% removal of COD at HRT of 8 days and exposure time of 5 days, with 0.984 desirability. The integrated plant-assisted treatment system showed reliable performance in treating textile wastewater at optimum operational conditions to improve effluent quality before disposal into water bodies or being recycled into the process. The potential of phytoremediator (produced plant biomass) to be utilized as resources for bioenergy or to be converted into value added products (adsorbent or biochar) provides an alternative to management strategy for better environmental sustainability.

4.
Molecules ; 27(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36557866

ABSTRACT

This study concerns the role of activated carbon (AC) from palm raceme as a support material for the enhancement of lipase-catalyzed reactions in an aqueous solution, with deep eutectic solvent (DES) as a co-solvent. The effects of carbonization temperature, impregnation ratio, and carbonization time on lipase activity were studied. The activities of Amano lipase from Burkholderia cepacia (AML) and lipase from the porcine pancreas (PPL) were used to investigate the optimum conditions for AC preparation. The results showed that AC has more interaction with PPL and effectively provides greater enzymatic activity compared with AML. The optimum treatment conditions of AC samples that yield the highest enzymatic activity were 0.5 (NaOH (g)/palm raceme (g)), 150 min, and a carbonization temperature of 400 °C. DES was prepared from alanine/sodium hydroxide and used with AC for the further enhancement of enzymatic activity. Kinetic studies demonstrated that the activity of PPL was enhanced with the immobilization of AC in a DES medium.


Subject(s)
Charcoal , Leukemia, Myeloid, Acute , Swine , Animals , Biomass , Kinetics , Lipase/metabolism , Solvents , Hydrolysis
5.
J Environ Manage ; 287: 112271, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33706093

ABSTRACT

The aquaculture industry has become increasingly important and is rapidly growing in terms of providing a protein food source for human consumption. With the increase in the global population, demand for aquaculture is high and is estimated to reach 62% of the total global production by 2030. In 2018, it was reported that the demand for aquaculture was 46% of the total production, and with the current positive trends, it may be possible to increase tremendously in the coming years. China is still one of the main players in global aquaculture production. Due to high demand, aquaculture production generates large volumes of effluent, posing a great danger to the environment. Aquaculture effluent comprises solid waste and dissolved constituents, including nutrients and contaminants of emerging concern, thereby bringing detrimental impacts such as eutrophication, chemical toxicity, and food insecurity. Waste can be removed through culture systems, constructed wetlands, biofloc, and other treatment technologies. Some methods have the potential to be applied as zero-waste discharge treatment. Thus, this article analyses the supply and demand for aquaculture products, the best practices adopted in the aquaculture industry, effluent characteristics, current issues, and effluent treatment technology.


Subject(s)
Aquaculture , Wetlands , China , Conservation of Natural Resources , Humans , Technology
6.
J Environ Manage ; 267: 110643, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32421674

ABSTRACT

Pilot-scale constructed wetlands planted with Scirpus grossus, were used to investigate the effects of applying a three-rhizobacterial consortium (Bacillus cereus strain NII, Bacillus subtilis strain NII and Brevibacterium sp. strain NII) on the growth of S. grossus and also on the accumulation of iron (Fe) and aluminium (Al) in S. grossus. The experiment includes constructed wetlands with the addition of 2% of the consortium rhizobacteria and without the consortium rhizobacteria addition (acting as control). During each sampling day (0, 5, 10, 15, 20, 25, 30, 42, 72 and 102), plant height, concentration of Fe and Al and sand microbial community were investigated. The results for the constructed wetland with the addition of consortium rhizobacteria showed the growth of S. grossus increased significantly at 26% and 29% for plant height and dry weight, respectively. While the accumulation of Fe and Al in S. grossus were enhanced about 48% and 19% respectively. To conclude, the addition of the rhizobacteria consortium has enhanced both the growth of S. grossus and the metal accumulation. These results suggesting that rhizobacteria has good potential to restore Fe and Al contaminated water in general and particularly for mining wastewater.


Subject(s)
Cyperaceae , Wetlands , Aluminum , Biodegradation, Environmental , Wastewater
7.
Int J Phytoremediation ; 20(7): 721-729, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29723047

ABSTRACT

In this study, the removal of arsenic (As) by plant, Ludwigia octovalvis, in a pilot reed bed was optimized. A Box-Behnken design was employed including a comparative analysis of both Response Surface Methodology (RSM) and an Artificial Neural Network (ANN) for the prediction of maximum arsenic removal. The predicted optimum condition using the desirability function of both models was 39 mg kg-1 for the arsenic concentration in soil, an elapsed time of 42 days (the sampling day) and an aeration rate of 0.22 L/min, with the predicted values of arsenic removal by RSM and ANN being 72.6% and 71.4%, respectively. The validation of the predicted optimum point showed an actual arsenic removal of 70.6%. This was achieved with the deviation between the validation value and the predicted values being within 3.49% (RSM) and 1.87% (ANN). The performance evaluation of the RSM and ANN models showed that ANN performs better than RSM with a higher R2 (0.97) close to 1.0 and very small Average Absolute Deviation (AAD) (0.02) and Root Mean Square Error (RMSE) (0.004) values close to zero. Both models were appropriate for the optimization of arsenic removal with ANN demonstrating significantly higher predictive and fitting ability than RSM.


Subject(s)
Arsenic , Onagraceae , Biodegradation, Environmental , Neural Networks, Computer
8.
Chemosphere ; 349: 140881, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38048826

ABSTRACT

Treatment of petroleum-contaminated soil to a less toxic medium via physical and chemical treatment is too costly and requires posttreatment. This review focuses on the employment of phytoremediation and mycoremediation technologies in cleaning hydrocarbon-contaminated soil which is currently rare. It is considered environmentally beneficial and possibly cost-effective as it implements the synergistic interaction between plants and biosurfactant producing mycorrhiza to degrade hydrocarbon contaminants. This review also covers possible sources of hydrocarbon pollution in water and soil, toxicity effects, and current technologies for hydrocarbon removal and degradation. In addition to these problems, this review also discusses the challenges and opportunities of transforming the resultant treated sludge and treating plants into potential by-products for a higher quality of life for future generations.


Subject(s)
Mycorrhizae , Petroleum , Soil Pollutants , Biodegradation, Environmental , Soil Pollutants/analysis , Quality of Life , Petroleum/metabolism , Soil , Plants/metabolism , Mycorrhizae/metabolism , Hydrocarbons/metabolism , Soil Microbiology
9.
Chemosphere ; 353: 141595, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38438021

ABSTRACT

Increasing aquaculture cultivation produces large quantities of wastewater. If not handled properly, it can have negative impacts on the environment. Constructed wetlands (CWs) are one of the phytoremediation methods that can be applied to treat aquaculture effluent. This research was aimed at determining the performance of Cyperus rotundus in removing COD, BOD, TSS, turbidity, ammonia, nitrate, nitrite, and phosphate from the batch CW system. Treatment was carried out for 30 days with variations in the number of plants (10, 15, and 20) and variations in media height (10, 12, and 14 cm). The result showed that aquaculture effluent contains high levels of organic compounds and nutrients, and C. rotundus can grow and thrive in 100% of aquaculture effluent. Besides that, the use of C. rotundus in CWs with the effect of numbers of plants and media height showed performance of COD, BOD, TSS, turbidity, ammonia, nitrate, nitrite, and phosphate with 70, 79, 90, 96, 64, 82, 92, and 48% of removal efficacy, respectively. There was no negative impact observed on C. rotundus growth after exposure to aquaculture effluent, as indicated by the increase in wet weight, dry weight, and growth rate when compared to the control. Thus, adding aquaculture effluent to CWs planted with C. rotundus supports the growth and development of plants while also performing phytoremediation.


Subject(s)
Cyperus , Waste Disposal, Fluid/methods , Wetlands , Nitrates , Nitrites , Ammonia , Biodegradation, Environmental , Plants , Phosphates , Aquaculture
10.
Microbiol Res ; 268: 127288, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36571921

ABSTRACT

Heavy metal wastes, particularly hexavalent chromium [Cr(VI)], are generated from anthropogenic activities, and their increasing abundance has been a research concern due to their toxicity, genotoxicity, carcinogenicity and mutagenicity. Exposure to these dangerous pollutants could lead to chronic infections and even mortality in humans and animals. Bioremediation using microorganisms, particularly bacteria, has gained considerable interest because it can remove contaminants naturally and is safe to the surrounding environment. Bacteria, such as Pseudomonas putida and Bacillus subtilis, can reduce the toxic Cr(VI) to the less toxic trivalent chromium Cr(III) through mechanisms including biotransformation, biosorption and bioaccumulation. These mechanisms are mostly linked to chromium reductase and nitroreductase enzymes, which are involved in the Cr(VI) reduction pathway. However, relevant data on the nitroreductase route remain insufficient. Thus, this work proposes an alternative metabolic pathway of nitroreductase, wherein nitrate activates the reaction and indirectly reduces toxic chromium. This nitroreductase pathway occurs concurrently with the chromium reduction pathway.


Subject(s)
Bacteria , Chromium , Humans , Animals , Biodegradation, Environmental , Chromium/toxicity , Bacteria/metabolism , Metabolic Networks and Pathways
11.
Heliyon ; 9(6): e17284, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37389087

ABSTRACT

The batik industry has been one of the main family businesses in most of the east-coast region of the Malaysian peninsula for many years. However, appropriate water treatment is still a major challenge for this industry. Stringent laws introduced by the Malaysian authorities and the intention to protect the environment are factors that drive researchers to search for suitable, appropriate, affordable and efficient treatment of batik wastewater. Treatment research on batik wastewater is still lacking and coagulation-flocculation treatment using alum was introduced and chosen as a stepping stone toward the selection of green coagulants. This study aimed to determine the best conditions for alum flocculation-coagulation using a standard jar test method. Four main factors were investigated: alum dosage (0.1-3.5 g/L), pH (4-11), settling time (0.5-24 h) and rapid mixing rate (100-300 rpm). Results obtained were further analysed statistically using SPSS software prior to determining the significant effect of variable changes. From this study, the best conditions for batik wastewater treatment using the flocculation-coagulation process were found to be at alum dosage of 1.5 g/L, pH 8, 4 h settling time and a rapid mixing rate of 100 rpm. Chemical oxygen demand (COD), turbidity, colour and total suspended solids (TSS) were removed by 70.7, 92.2, 88.4 and 100%, respectively, under these conditions. This study showed that batik wastewater can be treated by the coagulation-flocculation process using chemical means of alum. This indicates the need for forthcoming developments in natural-based-coagulant-flocculants toward the sustainability of the batik industry.

12.
J Environ Manage ; 111: 34-43, 2012 Nov 30.
Article in English | MEDLINE | ID: mdl-22813857

ABSTRACT

Manganese (Mn(2+)) is one of the inorganic contaminant that causes problem to water treatment and water distribution due to the accumulation on water piping systems. In this study, Bacillus sp. and sewage activated sludge (SAS) were investigated as biosorbents in laboratory-scale experiments. The study showed that Bacillus sp. was a more effective biosorbent than SAS. The experimental data were fitted to the Langmuir (Langmuir-1 & Langmuir-2), Freundlich, Temkin, Dubinin-Radushkevich (D-R) and Redlich-Peterson (R-P) isotherms to obtain the characteristic parameters of each model. Mn(2+) biosorption by Bacillus sp. was found to be significantly better fitted to the Langmuir-1 isotherm than the other isotherms, while the D-R isotherm was the best fit for SAS; i.e., the χ(2) value was smaller than that for the Freundlich, Temkin, and R-P isotherms. According to the evaluation using the Langmuir-1 isotherm, the maximum biosorption capacities of Mn(2+) onto Bacillus sp. and SAS were 43.5 mg Mn(2+)/g biomass and 12.7 mg Mn(2+)/g biomass, respectively. The data fitted using the D-R isotherm showed that the Mn(2+) biosorption processes by both Bacillus sp. and SAS occurred via the chemical ion-exchange mechanism between the functional groups and Mn(2+) ion.


Subject(s)
Bacillus/metabolism , Manganese/metabolism , Sewage/chemistry , Water Purification/methods , Absorption , Filtration , Models, Theoretical , Temperature
13.
Sci Total Environ ; 819: 152931, 2022 May 01.
Article in English | MEDLINE | ID: mdl-34999070

ABSTRACT

Batik is well known as one of the unique identifiers of the Southeast Asian region. Several countries that still preserve the batik heritage are Malaysia, Indonesia, China and India. The Batik industry holds a significant place in Malaysia's craft-based industry. In Malaysia, batik motifs and patterns are mostly hand-drawn and painted directly on fabric, therefore, each one is unique. The players in the Batik industry are mostly small businesses and cottage industries, particularly in the states of Kelantan, Terengganu, Pahang, Sabah and Sarawak. However, their market growth and contribution are not synchronized with the treatment system. The wastewater generated by this industry rarely meets standard effluent requirements and regulations, thus worrying the authorities. Batik wastewater is categorized as one of the highly polluted wastewaters. The toxicity of pollutants from batik may reduce environmental quality and pose a risk to human health. Batik wastewater needs extensive treatment, since no complete and appropriate treatment has been applied for so many years in specific batik industries. This paper reviews the batik industry in Malaysia, its wastewater generation and the available current treatment practices. It discusses integrated treatments of coagulation-flocculation and phytoremediation technology as a batik wastewater treatment process with potential utility in the batik industry. This review may become part of the guidance for the entire batik industry, especially in Malaysia.


Subject(s)
Water Pollutants, Chemical , Water Purification , Flocculation , Humans , Industrial Waste/analysis , Textiles , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysis
14.
Sci Total Environ ; 818: 151668, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-34793802

ABSTRACT

The application of plant-based coagulants in wastewater treatment has increasingly progressed in the coagulation-flocculation process toward green economy and cleaner production. Plant-based coagulants have a potential as essential substitutes for commercially used chemical coagulants because of their natural characteristics and biodegradability. Chemical coagulants leave residues in treated water and generated sludge, which cause harm to human health and the ecosystem. Thus, the exploration of plant-based coagulants in wastewater treatment could reduce and eliminate the potential damage of chemical coagulants and promote the alternative approach for sustainable environment. The general processing steps of the end-to-end plant-based coagulant production, which includes primary, secondary, and tertiary stages, are discussed. However, this review focuses more on the extraction process using different solutions and compares the performance of different coagulants in removal activities after effluent treatment. Discussion on the arising challenges is elaborated, and approaches for plant-based coagulant research in the near future are suggested.


Subject(s)
Waste Disposal, Fluid , Water Purification , Ecosystem , Flocculation , Humans , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Purification/methods
15.
Chemosphere ; 290: 133319, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34922971

ABSTRACT

The contamination of aquaculture products and effluents by contaminants of emerging concern (CECs) from the direct chemical use in aquaculture activities or surrounding industries is currently an issue of increasing concern as these CECs exert acute and chronic effects on living organisms. CECs have been detected in aquaculture water, sediment, and culture species, and antibiotics, antifoulants, and disinfectants are the commonly detected groups. Through accumulation, CECs can reside in the tissue of aquaculture products and eventually consumed by humans. Currently, effluents containing CECs are discharged to the surrounding environment while producing sediments that eventually contaminate rivers as receiving bodies. The rearing (grow-out) stages of aquaculture activities are issues regarding CECs-contamination in aquaculture covering water, sediment, and aquaculture products. Proper regulations should be imposed on all aquaculturists to control chemical usage and ensure compliance to guidelines for appropriate effluent treatment. Several techniques for treating aquaculture effluents contaminated by CECs have been explored, including adsorption, wetland construction, photocatalysis, filtration, sludge activation, and sedimentation. The challenges imposed by CECs on aquaculture activities are discussed for the purpose of obtaining insights into current issues and providing future approaches for resolving associated problems. Stakeholders, such as researchers focusing on environment and aquaculture, are expected to benefit from the presented results in this article. In addition, the results may be useful in establishing aquaculture-related CECs regulations, assessing toxicity to living biota, and preventing pollution.


Subject(s)
Water Pollutants, Chemical , Water Purification , Aquaculture , Breeding , Environmental Monitoring , Humans , Wastewater , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
16.
Environ Sci Pollut Res Int ; 29(2): 2579-2587, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34374006

ABSTRACT

The performance of local plants was tested using synthetic turbid water resembling real wastewater by measuring their ability to remove turbidity. The selected plants were A. indica, S. palustris, D. linearis, S. polyanthum, M. esculenta, P. sarmentosum, and M. malabathricum which can easily be found locally. The experiment was run based on coagulant dosages varied from 0 to 10 g/L for each plant with a rapid mixing speed at 180 rpm for 3 min, slow mixing speed at 10 rpm for 20 min, and settling time for 30 min. The results demonstrated that each plant has been capable of reducing turbidity by different amounts, with an increase in the coagulant dosage. The optimum coagulant dosages achieved for A. indica, S. palustris, S. polyanthum, and D. linearis were 10 g/L with turbidity removal at 26.9%, 24.9%, 24.9%, and 17.5%, respectively. P. sarmentosum and M. esculenta attained optimum coagulant dosages at 5 g/L with turbidity removal at 24.2% and 22.2%, and lastly M. malabathricum at 0.1 g/L (12.2%). P. sarmentosum was suggested to the best natural coagulant which achieved the highest removal of turbidity with a low dosage used.


Subject(s)
Water Purification , Flocculation , Plant Leaves/chemistry , Wastewater , Water/analysis
17.
Sci Total Environ ; 814: 152799, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-34982990

ABSTRACT

A reedbed system planted with Phragmites australis was implemented to treat chlorinated hydrocarbon-contaminated groundwater in an industrial plant area. Reedbed commissioning was conducted from July 2016 to November 2016 to treat contaminated groundwater via a pump-and-treat mechanism. Combination of horizontal and vertical reedbed systems was applied to treat 1,2-dichloroethane (1,2 DCA) under four parallel installations. The 2-acre horizontal and vertical reedbed systems were designed to treat approximately 305 m3/day of pumped groundwater. Initial concentration of 1,2 DCA was observed at 0.362 mg/L to 4320 mg/L, and the reedbed system successfully reduced the concentration up to 67.9%. The average outlet concentration was measured to be 2.08 mg/L, which was lower than the site-specific target level of 156 mg/L. Natural attenuation analysis was conducted using first-order decay kinetics, showing an average natural attenuation rate of 0.00372/year. Natural attenuation of 1,2 DCA was observed in shallow monitoring wells, which was indicated by the reduction trend of 1,2 DCA concentration, thereby confirming that the reedbed system worked well to remove 1.2 DCA from contaminated groundwater at the shallow profile.


Subject(s)
Groundwater , Water Pollutants, Chemical , Biodegradation, Environmental , Ethylene Dichlorides , Feasibility Studies , Water Pollutants, Chemical/analysis
18.
Environ Sci Pollut Res Int ; 29(39): 58430-58453, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35759099

ABSTRACT

The increasing intensification of the aquaculture industry requires the development of new strategies to reduce the negative impacts of wastewater on the environment. Plant-based coagulants/flocculants, regarded as one of the environmentally friendly technologies for wastewater treatment, show good performance in the removal of suspended solids from wastewater. The aforementioned technology involves the utilization of plants as coagulants/flocculants in the treatment process and produces nontoxic sludge as treatment by-products. The produced sludge could be converted into valuable compounds used in agriculture. This review summarizes coagulation-flocculation by using plant-based coagulants/flocculants, its mechanisms, operational factors that control the treatment process, and its application in the treatment of wastewater, especially aquaculture effluent. Moreover, this work discusses the potential utilization of aquaculture sludge as a valuable compound used in agriculture. The presented review aims to emphasize the potential of using plant-based coagulants/flocculants in the treatment of aquaculture effluent and explore the potential of using the produced sludge as fertilizer for plants to solve problems related to sludge handling and the toxicity of inorganic coagulants in a recirculating aquaculture system. This paper concluded that utilization of recovered nutrients in the form of solids is feasible for agricultural purposes, while a hydroponic system can be used to reclaim the nutrients in the form of solution.


Subject(s)
Sewage , Water Purification , Aquaculture , Flocculation , Nutrients , Waste Disposal, Fluid , Wastewater
19.
Sci Total Environ ; 836: 155564, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35504385

ABSTRACT

Bioflocculants gain attention as alternatives to chemical flocculants because they are more environmentally friendly and highly biodegradable. This study aims to improve the bioflocculant production by Serratia marcescens using one-variable-at-a-time (OVAT) analysis and analyze its flocculating activity performance, toxicity, and the flocculation mechanism. The effect of multiple variables including initial inoculum size, pH, mixing speed, temperature, growth medium, and incubation period was assessed through OVAT. Flocculating activity was then determined via jar test analysis, and toxicity test was performed using Daphnia magna and Daphnia pulex. The flocculation mechanism was determined via particle size distribution and zeta potential analysis. The optimum conditions for the improved bioflocculant production were as follows: 10% v/v initial inoculum size, pH 7, mixing speed of 150 rpm, room temperature, nutrient broth medium, and 72 h of incubation period. Scanning electron microscopy showed flake-like intact structure with coarse surface. The produced bioflocculant showed flocculating activity of 48% in 5227 ± 580 NTU initial kaolin turbidity with 1 mg/L concentration and 5% v/v dosage of bioflocculant, following the second-order kinetics. Toxicity test to D. magna and D. pulex showed the 48 h LC50 values of 8.06 and 6.42 g/L, respectively; these values are greatly higher than the fabricated chemical flocculants. The flocculation process using bioflocculant produced by S. marcescens was suggested to occur via bridging mechanism because it greatly affected the particle size distribution. Results indicated that bioflocculant produced by S. marcescens is much environmentally friendly and has great potential for turbidity removal in water/wastewater.


Subject(s)
Serratia marcescens , Wastewater , Culture Media , Flocculation , Hydrogen-Ion Concentration , Kinetics , Wastewater/chemistry
20.
Heliyon ; 8(4): e08995, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35399376

ABSTRACT

Bioaugmentation, the addition of cultured microorganisms to enhance the currently existing microbial community, is an option to remediate contaminated areas. Several studies reported the success of the bioaugmentation method in treating heavy metal contaminated soil, but concerns related to the applicability of this method in real-scale application were raised. A comprehensive analysis of the mechanisms of heavy metal treatment by microbes (especially bacteria) and the concerns related to the possible application in the real scale were juxtaposed to show the weakness of the claim. This review proposes the use of bioaugmentation-assisted phytoremediation in treating heavy metal contaminated soil. The performance of bioaugmentation-assisted phytoremediation in treating heavy metal contaminated soil as well as the mechanisms of removal and interactions between plants and microbes are also discussed in detail. Bioaugmentation-assisted phytoremediation shows greater efficiencies and performs complete metal removal from soil compared with only bioaugmentation. Research related to selection of hyperaccumulator species, potential microbial species, analysis of interaction mechanisms, and potential usage of treating plant biomass after treatment are suggested as future research directions to enhance this currently proposed topic.

SELECTION OF CITATIONS
SEARCH DETAIL