Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS One ; 18(5): e0285735, 2023.
Article in English | MEDLINE | ID: mdl-37200306

ABSTRACT

BACKGROUND: Fibrinogen-like protein 2 (FGL2) is a serine protease capable of converting prothrombin into thrombin (i.e., prothrombinase-like activity) while bypassing the classic coagulation cascade. It has been reported to be expressed by mononuclear blood cells and endothelial cells. There are multiple reports that FGL2 supports tumor development and metastasis. However, in the blood, the origin and functional significance of FGL2 has not been established. OBJECTIVE: To determine if FGL2, a malignancy related enzyme, is present in platelets. METHODS: Peripheral blood samples were collected in K2 EDTA tubes. Blood cells and platelets were separated and thoroughly washed to produce plasma-free samples. Procoagulant activity was measured in the cell lysates using a thrombin generation test or an adjusted prothrombin time (PT) test in plasma deficient of factor X. The findings were further supported by confocal microscopy, immunoprecipitation, flow cytometry, enzyme-linked immunosorbent assays and specific inhibition assays. RESULTS: FGL2 protein was readily detected in platelets. Also, despite being expressed by lymphocytes, FGL2 prothrombinase-like activity was solely detected in platelet samples, but not in white blood cell samples. Quiescent platelets were shown to contain the FGL2 protein in an active form. Upon activation, platelets secreted the active FGL2 into the milieu. CONCLUSIONS: Active FGL2 is found in platelets. This suggests another role for the involvement of platelets in malignancies.


Subject(s)
Thrombin , Thromboplastin , Blood Coagulation , Blood Platelets/metabolism , Endothelial Cells/metabolism , Fibrinogen/metabolism , Thrombin/metabolism , Thromboplastin/metabolism , Humans
2.
Chempluschem ; 83(5): 320-333, 2018 May.
Article in English | MEDLINE | ID: mdl-31957349

ABSTRACT

The design and synthesis of a novel nuclear factor erythroid 2-related factor 2 (Nrf2) enhancer is reported. Using a structure-based virtual screening approach, several commercially available compounds were identified as having high probability to interact with the Nrf2-binding pocket in the Kelch-like ECH-associated protein 1 (Keap1). Keap1 is an adaptor protein that recruits Nrf2 to a cullin-3-dependent ubiquitin ligase complex. The identified compounds were tested against rat pheochromocytoma PC-12 cells for their cytoprotective activity, and one compound (SKT359126) demonstrated an Nrf2-mediated cell-protective effect. Based on the structure of SKT359126, 23 novel derivatives were synthesized and evaluated. Of the screened derivatives, 1-{4-[(3,4-dihydroxybenzylidene)amino]phenyl}-5-oxopyrrolidine-3-carboxylic acid demonstrated better activity than the parent molecules in activating the Nrf2 transduction pathway in a dose- and time-dependent manner. This compound represents a promising starting point for the development of therapeutics for the treatment of oxidative-stress-related diseases.

3.
Chempluschem ; 83(5): 318, 2018 May.
Article in English | MEDLINE | ID: mdl-31957368

ABSTRACT

Invited for this month's cover is Prof. Arie Gruzman (Bar-Ilan University) and collaborators who have developed an Nrf2 enhancer. This compound activated the Nrf2 transduction pathway and because of this the translation of dozens of antioxidant cytoprotective proteins in a dose- and time-dependent manner and protected PC-12 cells against oxidative stress. Considering the imbalance between production and elimination of oxidative species involved in the pathophysiology of many human diseases, this compound is a promising starting point for the development of novel therapeutics for the treatment of oxidative-stress-related diseases. Read the full text of the article at 10.1002/cplu.201700539.

SELECTION OF CITATIONS
SEARCH DETAIL